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Simple Summary: Pseudococcus viburni (Signoret) is an important invasive species that is recorded
in more than 60 countries worldwide and feeds on nearly 91 families and 259 genera. However,
the potential distribution range and management strategies for this pest are still poorly understood.
Based on historical distribution data and environmental factors, the present study obtained the
potentially suitable areas of P. viburni under different climate change scenarios by MaxEnt. The total
area of suitable habitat areas will also show an increased trend in future climatic conditions. In order
to control the spread of P. viburni, we need to strengthen the monitoring and quarantine measures at
the Southern ports.

Abstract: The potential distribution range and management strategies for P. viburni are poorly
understood. Based on historical distribution data and environmental factors, the present study
predicted the potentially suitable areas for P. viburni spread under different climate change scenarios
using MaxEnt (maximum entropy). The results showed that precipitation of the coldest quarter
(Bio19), precipitation seasonality (Bio15), and mean temperature of the wettest quarter (Bio8) were
the most important environmental factors determining the distribution of P. viburni. Under the
current climate conditions, its potential suitable areas are southern China, the whole of Japan, North
America (especially the eastern part of the United States), the southwestern part of South America, the
Mediterranean coast and most of Europe, the central part of Africa, i.e., the south of the Sahara Desert,
and most of the southern coast of Australia. The total area of habitats suitable for this insect pest is
predicted to be increased in the future. In order to prevent P. viburni transmission and spread, there is
a need to strengthen the monitoring and quarantine measures against this pest at the Southern ports.

Keywords: MaxEnt; potential distribution model; worldwide; environmental variables; alien species

1. Introduction

Mealybugs (Hemiptera: Pseudococcidae) are important plant pests worldwide [1].
They are small sap-sucking insects, reproduce quickly, and have a large population [2].
Once harmed, it will lead to leaf yellowing, defoliation, reduced plant growth, and even the
entire plant withering and dying. Indirectly, they can also damage plants as insect-vectors
of plant disease, such as: grapevine leafroll-associated viruses (GLRaVs) [3,4] and cacao
mild mosaic virus [5]. In addition, the honeydew secreted by scale insects contaminates
host plants and breeds sooty mold, seriously reducing the yield and quality of fruit and
affecting the greening effect of street trees and flowers. On the other hand, mealybugs are
small and live in seclusion, which can easily spread to new areas by the transporting of
seedlings, leading to outbreaks and disasters. Therefore, many mealybugs are regarded
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as quarantine objects, and quarantine measures are strictly implemented to prevent their
transmission and spread [6].

Pseudococcus viburni (Signoret, 1875) is a worldwide species, found in 60 countries [7],
also commonly known as the obscure mealybug, previously recorded in Brazil only in the
states of Minas Gerais, Rio de Janeiro, and São Paulo [8–10]. It is possible that P. viburni
was brought into Europe on potatoes from South America via the Canary Islands in the
sixteenth century [11]. The mealybug was first described from France, as Dactylopius viburni
Signoret, 1875. This species was spread from its area of origin early, by human transport
of infested plants; subsequently, this has made it difficult to work out its area of origin. P.
viburni has a very wide host range, nearly 91 plant families and 259 genera [7], including
important economic crops such as apples, citrus, grapes, and tomatoes, as well as papaya
and potatoes [12].

Climate is considered to be the main factor affecting species’ large-scale distribu-
tion [13,14]. Predicting species’ geographical distribution and their response to climate
change is significant for biodiversity conservation and sustainable ecosystems develop-
ment [15]. The potential impact of climate change on the predicted range and distribution
of invasive species is well recognized; research efforts focus mainly on the spatial character-
istics of species distribution, in order to facilitate management and protection [16,17].

MaxEnt (maximum entropy) is a machine learning model used to find the probability
of maximum entropy distribution, which can be used to predict the potential distribution of
target species that meet the maximum entropy under various conditions [18]. This software
estimated the potential distribution of focus species by environmental variables and a small
amount of species distribution data. Specifically, MaxEnt predicts the potential distribution
by analyzing the location data of the target species (a dependent variable) as a function of
environmental variables. Distribution data are generally occurrence data obtained through
field investigation or literature and network, and the existing information such as land
cover, forest type, ecological zone, distance, geographical characteristics, and climate data
can be used as the source of environmental variables [19].

In this current study, the MaxEnt software was employed to predict the world’s
potential geographical distribution range of P. viburni under different climate change
scenarios. The main objectives were:

(1) to identify the mainly environmental factors affecting the potential distribution of
P. viburni;

(2) to observe the trends of suitable habitat range under climate change background;
(3) to provide a theoretical reference for the relevant departments to formulate corre-

sponding quarantine measures and ensure agriculture safety.

2. Materials and Methods
2.1. Data on Occurrence of the Species

The occurrence data of P. viburni were primarily obtained from two sources: the
Global Biological Diversity Information Facility (GBIF: https://www.gbif.org/ (accessed
on 10 November 2023)) (doi:10.15468/dl.yp7ene) [20] and Scalenet [7]. The Scalenet is a
literature-based model of scale insect biology and systematics, which included the geo-
graphic distribution information for nearly all scale insects all over the world. Thus, the
initial data included 216 locations (Table S1). To reduce the impact of bias on the MaxEnt
software, the R package “DISMO” was used to screen and delete distribution points with
duplicate occurrences and potential errors [21]. The “Fishnet” method was used to create a
small grid with a side length of 5 km to examine the remaining distribution points, and
then randomly select location points in the grid with multiple distribution points. This
work was conducted in ArcGIS 10.2 (ESRI, Redlands, CA, USA). After filtering the data,
202 location points were obtained for the final analysis, as shown in Figure 1 and Table S2.

https://www.gbif.org/
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Figure 1. Geographical occurrence points of Pseudococcus viburni. 
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minute (~5 km). For future climatic conditions, we used four different representative con-
centration pathways (RCPs), RCP2.6, RCP4.5, RCP6.0, and RCP8.5 of two future periods, 
i.e., 2050s and 2070s. Different concentration pathways represent different radiative forc-
ings and different CO2 equivalent concentrations that affect the life and physiological ac-
tivities of insects. Three global climate models (GCMs) were selected for each representa-
tive concentration pathway, including HADGEM2-AO, BCC-CSM1-1, and MIROC5, to 
assess their future potential distribution. 

Table 1. Environmental variables used in this study. 
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Bio1 Annual mean temperature (°C) 
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Bio3 Diurnal temperature difference to annual temperature difference ratio 
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Bio8 Mean temperature of the wettest quarter (°C) 
Bio9 Mean temperature of the driest quarter (°C) 

Bio10 Mean temperature of the warmest quarter (°C) 
Bio11 Mean temperature of the coldest quarter (°C) 
Bio12 Annual precipitation (mm) 
Bio13 Precipitation of the wettest month (mm) 
Bio14 Precipitation of the driest month (mm) 
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Bio18 Precipitation of the warmest quarter (mm) 
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There is usually multicollinearity among multiple variables, which reduces the transfer-
ability of the model [23]. In order to minimize the effects of highly correlated variables, Pear-
son correlation analysis was used for each pairwise comparison of all selected environmental 

Figure 1. Geographical occurrence points of Pseudococcus viburni.

2.2. Selection and Comparison of Environmental variables

The environmental variables used in this study were climate variables obtained from
the World Environment Variable database (WorldClim 1.4; http://www.worldclim.org
(accessed on 15 November 2023)) [22]. The data included 19 bioclimatic variables (Bio1-
Bio19) (Table 1) of the current and future scenarios with a spatial resolution was 2.5 arc
minute (~5 km). For future climatic conditions, we used four different representative
concentration pathways (RCPs), RCP2.6, RCP4.5, RCP6.0, and RCP8.5 of two future periods,
i.e., 2050s and 2070s. Different concentration pathways represent different radiative forcings
and different CO2 equivalent concentrations that affect the life and physiological activities
of insects. Three global climate models (GCMs) were selected for each representative
concentration pathway, including HADGEM2-AO, BCC-CSM1-1, and MIROC5, to assess
their future potential distribution.

Table 1. Environmental variables used in this study.

Variable
Abbreviation Variables

Bio1 Annual mean temperature (◦C)
Bio2 Mean diurnal range (◦C)
Bio3 Diurnal temperature difference to annual temperature difference ratio
Bio4 Temperature seasonality (standard deviation × 100)
Bio5 Max temperature of the warmest month (◦C)
Bio6 Min temperature of the coldest month (◦C)
Bio7 Temperature annual range
Bio8 Mean temperature of the wettest quarter (◦C)
Bio9 Mean temperature of the driest quarter (◦C)

Bio10 Mean temperature of the warmest quarter (◦C)
Bio11 Mean temperature of the coldest quarter (◦C)
Bio12 Annual precipitation (mm)
Bio13 Precipitation of the wettest month (mm)
Bio14 Precipitation of the driest month (mm)
Bio15 Precipitation seasonality
Bio16 Precipitation of the wettest quarter (mm)
Bio17 Precipitation of the driest quarter (mm)
Bio18 Precipitation of the warmest quarter (mm)
Bio19 Precipitation of the coldest quarter (mm)

The environmental variables used in this study are all climatic factors.

There is usually multicollinearity among multiple variables, which reduces the trans-
ferability of the model [23]. In order to minimize the effects of highly correlated variables,
Pearson correlation analysis was used for each pairwise comparison of all selected environ-
mental variables for removal of some of the redundant and less important variables. Highly

http://www.worldclim.org
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correlated variables (r2 ≥ |0.8|) for P. viburni were removed from original environmental
variables, which filtered those below the threshold values for final analysis (Table S3). The
Pearson correlation analysis was implemented by SPSS statistics 19.0. Finally, Bio2, Bio8,
Bio15, Bio18, and Bio19 were retained for further analysis.

2.3. Model Construction

The MaxEnt software (version 3.4.1) was used in this study to map the potential
distribution of P. viburni [15]. Generally, the default settings of MaxEnt software generate
overfitting models [24]. Therefore, Feature Class (FC) and Regular Multiplier (RM) were
used to optimize the model. The characteristic type represents the different conversions of
the coordinated variables [25], including linear (L), multiplication (P), hinge (H), threshold
(T), and quadratic (Q) [26]. RM can reduce the model overfitting. We used the R package
“ENMeval” [27] to test whether the parameters were overfitted and selected the combination
of multiplication and elements based on these results [28]. The RM value range was 0.5
to 4.0 in increments of 0.5, and the FC had eight different combinations (L, LQ, LQP, QHP,
LQH, LQHP, QHPT, LQHPT). The “checkerboard2” approach was applied by calculating
the standardized Akaike information criterion coefficient (AICc), and the lowest delta AICc
scores were selected to run the final MaxEnt models [29].

In the research of P. viburni, the best parameters of the FC and RM were set to QPHT
and 1, respectively (Figure 2, Table S4). In addition, the logistic output of MaxEnt was used
in current study. The suitable and unsuitable habitats or binary presence/absence maps
for P. viburni were defined by a 10th percentile training presence logistic threshold. This
threshold has been widely applied in species distribution modeling, especially when data
were collected by different collectors [30]. The jackknife test was used to assess the effects
of each environmental variable. The number of background points was set to be 10,000
and the model was repeated 10 times to take the average, and the rest were set by default.
A 10-fold cross-validation was used to run MaxEnt to prevent random errors [31] based
on species occurrence data and environmental variables. This study employed the same
threshold to define the suitable and unsuitable habitats for this species. For predicting
future habitat areas, the average values obtained from the three global climate models
(GCMs) were used to construct the distribution map of habitat areas.
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2.4. Identification of Potential Habitat Threshold

Based on a logistic output format, MaxEnt produced a worldwide prediction map,
which provided a continuous habitat suitability index ranging from 0 (unsuitable) to 1
(highly suitable). A 10th percentile training presence logistic threshold (0.3062) was used
to perform suitability level (defining suitable and unsuitable areas) classification on the
predicted results [32]. Suitable habitat areas were divided into four levels: (1) unsuitable
habitats where suitability area was below threshold; (2) threshold—0.4, which represented
low habitat suitability; (3) 0.4–0.6 threshold represented moderate habitat suitability area;
and (4) 0.6–1 threshold represented high habitat suitability area.

2.5. Model Evaluation

Several indicators were applied to evaluate MaxEnt models including the receiver
operating characteristic (AUC), kappa statistic (Kappa), the true skill statistic (TSS), and the
partial AUC (pAUC) [33]. Among them, AUC is the most widely used one. However, there
are disadvantages to this approach due to equal weighting of omission and commission
errors, and even AUC cannot provide information on the spatial distribution of model
errors. [29,34]. Therefore, in this study, the partial receiver operating characteristic (pROC)
metric approach was chosen to evaluate the performance of the model. The Niche toolbox
(http://shiny.conabio.gob.mx:3838/nichetoolb2/ (accessed on 12 December 2023)) was
used for this processing, and parameters were set up to be assessed with 1000 repetitions
and E = 0.05 [35].

3. Results
3.1. Model Performance Evaluation

This work predicted the habitats suitable for P. viburni using species distribution mod-
eling based on the known occurrence points of the species and climatic factors (including
current and different model climatic variables). The results of the performance of the model
have been proved by pROC tests to have more accurate prediction potential (Figure S1).
The mean value for partial AUC at 0.05 was 0.74998 for P. viburni (p < 0.001).

3.2. Climate Variables

The model results showed that the precipitation index was the most important factor
affecting the geographical distribution of P. viburni (Table 2). Further, it showed that the
Precipitation of Coldest Quarter (Bio19) contributed the most to the model, accounting for
about 70.7%; precipitation seasonality (Bio15) and mean temperature of the wettest quarter
(Bio8) contributed 12.6% and 10.8% to the model, respectively.

Table 2. Relative contribution of each environmental variable from MaxEnt.

Variables Percentage Contribution (%)

Precipitation of the coldest quarter (Bio19) 70.7
Precipitation seasonality (Bio15) 12.6

Mean temperature of wettest quarter (Bio8) 10.8
Mean diurnal range (Bio2) 3

Precipitation of the warmest quarter (Bio18) 2.9

3.3. Response Curves

The response curves indicated how the climatic suitability of P. viburni was changed
with the five selected environmental variables (Figure 3). Based on these response curves,
climate variables associated with habitat suitability areas were 1–2.5 ◦C for Bio2, 19–24 ◦C
for Bio8, 0–24 for Bio15, 250–400 mm for Bio18, and 200–400 mm for Bio19.

http://shiny.conabio.gob.mx:3838/nichetoolb2/
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coccus viburni and environmental variables. The curves show the mean response of the 10 replicate
MaxEnt runs (red) and the mean ± SD (blue).

3.4. Current Suitable Area

The potential distribution map of P. viburni was developed based on current speciation
data and climate variables. Through the natural interval, the potential distribution range of
P. viburni was divided into three levels (Figure 4). The highly suitable areas of P. viburni:
in North America, it has a distribution in most parts of the southeastern coast and parts
of the western coast of North America as well as scattered in other regions of the United
States, Canada, and Mexico. In South America, it is concentrated in most of southern Brazil,
all of Uruguay, central Chile, and the border of Brazil, Uruguay, Argentina, and Paraguay.
It is scattered in other regions of South America. In the European continent, it is mainly
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distributed along the Mediterranean and Atlantic coasts. In mainland Asia, it is mainly
distributed in provinces such as Hunan, Anhui, Jiangxi, Fujian, and Taiwan in China, as
well as scattered along the coast of Japan and in areas near China, including Afghanistan,
Pakistan, India, Nepal, Bangladesh, Bhutan, Myanmar, Laos, and Vietnam. Some coastal
areas in Indonesia and near the Kuril Islands in Russia also exhibit its distribution. In
the African continent, it is mainly distributed near the equator, and slightly distributed in
southern South Africa, along the eastern coast of Madagascar, and in central Mozambique.
In mainland Australia, the pest is mainly distributed in the southern region of Australia
and spans most parts of New Zealand.
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Figure 4. The habitat suitability areas of Pseudococcus viburni under current climatic conditions.
Gray, unsuitable habitat suitability area; blue, low habitat suitability area; yellow, moderate habitat
suitability area; red, high habitat suitability area.

3.5. Future Potential Distribution

The potentially suitable areas for P. viburni under future scenarios (Figures 5 and 6)
were partially different from the current climatic conditions. In the future climate scenario,
when compared with the current climate, the suitable areas showed different trends. From
a global perspective, the highly suitable area showed a decrease trend under any of the
future climate scenarios. When comparing the high suitability area values for all other
climate scenarios with the current suitability area value, the decrease rate was more than
10%. In the RCP6.0-2050 and RCP6.0-2070 climatic scenarios, the area is −0.98 × 107 km2

and −1.00 × 107 km2, respectively (Figures 5C and 6C and Table 3), and the decrease rate
was 20.68% and 19.39%, respectively.

However, they all showed noticeable expansion in the low and moderate suitability
areas. For moderately suitability areas, the prediction of MaxEnt about gain in the area
under the future climate scenario combination RCP 8.5-2070 showed an increase of nearly
2.83 × 107 km2 (a 12.27% expansion in the currently suitable habitat areas) (Figure 6D and
Table 3). Except under the RCP4.5-2050 climate scenario, there was a slight decrease (3.50%),
and under other climate scenarios, they all indicated a slight rise (1.17–5.19%) (Table 3).
For low suitability area, under the RCP6.0-2050, RCP6.0-2070, and RCP8.5-2070 climate
scenarios, the area increased to −3.29 × 107 km2, −3.20 × 107 km2, and −3.22 × 107 km2,
respectively, with growth rates of 24.75%, 21.55%, and 22.21%, respectively.

In summary, the total area of suitable habitat areas will tend to increase in the future.
Under the RCP8.5-2070 climate scenario, the area of suitable habitat reached a maximum of
7.16 × 107 km2, an increase of 11.84% compared to the current.
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Table 3. Predicted suitable areas for Pseudococcus viburni under current and future climatic conditions (km2).

Pest
Species

Habitat
Level

Current Climate
Conditions Future Climate Conditions

rcp26-2050 rcp26-2070 rcp45-2050 rcp45-2070 rcp60-2050 rcp60-2070 rcp85-2050 rcp85-2070

obscure
mealybug

LSA
−2.63 × 107 −3.04 × 107 −2.95 × 107 −3.04 × 107 −3.16 × 107 −3.29 × 107 −3.20 × 107 −3.14 × 107 −3.22 × 107

(15.24%) (12.04%) (15.59%) (19.78%) (24.75%) (21.55%) (19.5%) (22.21%)

MSA
−2.52 × 107 −2.55 × 107 −2.61 × 107 −2.43 × 107 −2.64 × 107 −2.55 × 107 −2.65 × 107 −2.58 × 107 −2.83 × 107

(1.17%) (3.43%) (−3.50%) (4.69%) (1.26%) (5.19%) (2.53%) (12.27%)

HSA
−1.25 × 107 −1.09 × 107 −1.07 × 107 −1.09 × 107 −1.05 × 107 −0.98 × 107 −1.00 × 107 −1.11 × 107 −1.11 × 107

(−12.34%) (−14.38%) (−12.58%) (−15.53%) (−20.68%) (−19.39%) (−10.70%) (−10.98%)

TSA
−6.40 × 107 −6.68 × 107 −6.62 × 107 −6.57 × 107 −6.85 × 107 −6.83 × 107 −6.86 × 107 −6.83 × 107 −7.16 × 107

(4.33%) (3.51%) (2.59%) (6.97%) (6.66%) (7.14%) (6.75%) (11.84%)

Note: LSA: low suitability area; MSA: moderate suitability area; HSA: high suitability area; TSA: total suitability area.
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4. Discussion

Currently, there has been a wide use of modeling to predict species distribution in
disciplines such as ecology, biogeography, weed science, and conservation biology [36].
Particularly, regarding biological invasions, many researchers have been applying species
distribution models to predict the potential distribution of invasive species subsequently
using research results to strengthen the monitoring of relevant countries and regions [37].
Compared to other models, MaxEnt software has out-performed other software (GARP,
random forests, and Mahalanois) due to the need for presence-only data, stable perfor-
mance, and a simple user interface [38]. In the results of this study, the MaxEnt method
predicted the potential distribution of P. viburni based on the occurrence data of P. viburni
and environmental variables under current and future climatic conditions in the world.
The results based on the pROC test showed that the model had high performance—the
prediction results of the model were much better than those of the random model.

The response curve in this study also reflected the relationship between P. viburni and
relevant environmental variables, including the precipitation of the coldest quarter (Bio19),
precipitation seasonality (Bio15), mean temperature of the wettest quarter (Bio8), mean
diurnal range (Bio2), and precipitation of the warmest quarter (Bio18). The total area of
suitable habitat is likely to increase in the future under different climate scenarios. Hence,
the geographical areas that are supposed to provide suitable habitats for the pest in future
should be focused on the future monitoring of the pest.

The research on the biological aspects of P. viburni has been insufficient. Despite this,
Abbasipour and Taghavi confirm that the population density of P. viburni fluctuated with
the seasons. The results show that the population density increased rapidly to an early
peak in April, followed by a decline and then a low but steady density for remainder of
the season until there was another decline in November in Iran [39]. In addition, as P.
viburni populations move into the warmest summer months (June to July), the proportion
of populations found underground and under the stem of tea trees increases. These data
suggest that the P. viburni are seeking protection from the heat [39]. Based on these data and
phenomena, we conclude that this species is more likely to survive in areas with relatively
mild temperatures, and that either too high or too low temperature will affect its population
density or survival. Our study suggests that the 19–24 ◦C for Bio8 (mean temperature of
the wettest quarter) is an important variable determining the model. This seems to be
consistent with the result of Abbasipour and Taghavi in 2007. Unfortunately, it seems we do
not have enough biological data to speculate or verify the results of our model. Therefore,
we can only look forward to future work to further validate our results.

Under the current climatic conditions, the pest is mainly distributed in the Hunan,
Anhui, Jiangxi, Fujian, and Taiwan provinces in China. Currently, only Guizhou in China
has records [40]. In the wake of global change, there is a possibility that the P. viburni
may be introduced to environments that are conducive to its growth and development.
This introduction will have disastrous impacts by providing the pest with opportunities
to colonize and spread due to the lack of natural enemies in the introduced range. Even
though the highly suitable area is small, the moderately and marginally suitable areas are
large, indicating that P. viburni still poses an invasion risk in China. The moderately and
marginally suitable areas are mainly located in South China, the quarantine measures at
ports in these areas should be strengthened to prevent the invasion of P. viburni.

Recently, the main components of climate change have been global warming, drought,
increased CO2 levels in the atmosphere and increased frequency of extreme weather events
(IPCC, 2014). The impact of climate change on insects is particularly important as it can
directly or indirectly affect their populations and distribution [26]. Hence, there is a need
to keep an eye on the dispersal dynamics of invasive species under climate change. In
this context, this study predicted the potentially suitable areas of P. viburni under the
future climate scenario and compared it with the suitable areas under the current climatic
conditions. The results showed that the total suitable area will increase in the future climate
conditions. Therefore, the risk of P. viburni invasion will increase under the future climate
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scenarios. This is required to strengthen the monitoring and quarantine measures at ports
in the southern region of China to strictly prevent the invasion of P. viburni.

Based on the theory of maximum entropy, the MaxEnt model was implemented using
only two variables, i.e., occurrence information and corresponding environmental variables,
yet the prediction results of the model in this study were relatively good [41]. In other
words, the accuracy of the model based on MaxEnt was mainly affected by two factors:
(i) occurrence data and (ii) environmental variables [42]. According to previous studies,
areas for which more distribution data are available tend to be overpredicted, while areas
with fewer or no distribution records will be underpredicted. The current model is based
only on some abiotic factors, which limits the accuracy of the potential distribution range
of species under climate change. Other factors will also affect the results of the model,
such as the background area (also known as “research area”), dispersal capacity [43], land
use [44], and the host’s distribution range. Further, in similar studies, some important
factors are often ignored and the data required by the model are simplified, resulting in
errors in the predicted results, and there is a huge difference between prediction and reality.
Since different researchers apply different sample numbers and parameters to the model,
even predictions for the same species may yield diverse outcomes, representing varied
species [45].

This study provides important information about the potential distribution of P. viburni
under climate change conditions. Moreover, this work also provides an important theo-
retical basis for the monitoring and control of P. viburni. Further, when more data on the
species distribution become available, niche models will better predict the potential impact
of climate change on this species’ distribution.

5. Conclusions

This study used the distribution data of P. viburni and environmental factors to predict
potentially suitable regions for the invasion of this species under different climate scenarios.
The results suggested that precipitation of the coldest quarter (Bio19), precipitation season-
ality (Bio15), and mean temperature of the wettest quarter (Bio8) were the most important
environmental factors determining the distribution of P. viburni. Under the current climate
conditions, its potential suitable areas are mainly located in southern China, the whole
of Japan, the North American continent (especially the eastern part of the United States),
the southwestern part of South America, the Mediterranean coast, most of Europe, the
central part of Africa, i.e., south of the Sahara Desert, and most of the southern coast of
Australia. The total area of suitable habitat is likely to show an increased trend under future
climatic conditions.
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from SDMs.
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