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caused by the recent invasion of the cycad aulacaspis scale (Aulacaspis yasu-
matsui Takagi) into the wild populations of C. revoluta in the islands of
Amami-Oshima and Okinawa-jima. Within the last three decades, this cycad-
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1 | INTRODUCTION

Biological invasions are increasingly common during the
Anthropocene as humans continue to vector species,
either deliberately or inadvertently (Simberloff, 2013).
These invasions can have dire impacts on local biodiver-
sity and, through secondary impacts, can drive overall
habitat degradation or loss. The associated management
costs are likewise impactful, particularly in economically
under-resourced regions (Diagne et al., 2021). Insular
areas are typically more vulnerable to biological invasion,
as such ecosystems have evolved in relative isolation and
are hence less resilient to invasion than their continental
counterparts (Fordham & Brook, 2010). Moreover, they
tend to harbor more endemic species, so the potential for
extirpation and extinction of native biodiversity is high.
Several islands in the Pacific Ocean harbor unique
species of cycads. Collectively, cycads are one of the most
imperiled groups of organisms globally (IUCN Red List,
2023, Brummitt et al., 2015; Fragniere et al., 2015), with
roughly 70% of species assessed as threatened. In this
article, we focus on Cycas revoluta Thunb. (Cycadaceae),
the only native cycad from Japan. Described in 1782 by
Swedish botanist Carl Thunberg, C. revoluta is the third
oldest cycad to be formally described (Osborne, 2011)
(Figure 1). Curiously, the Japanese common name sotetsu
(#%4%) translates to “coming back from the death by
iron,” referring to the apparent phenomenon of driving a
rusted iron nail into the trunk of a debilitated plant with
the plant soon rejuvenating thereafter (Osborne &
Tomiyama, 1995). At the time of Thunberg's description,
C. revoluta had been cultivated in Europe for about
100 years (Osborne, 2011), but in the Ryukyu Islands,
where this taxon is endemic, C. revoluta has been revered
by people for centuries, forming part of the alimentary,

specific scale has been inadvertently transported outside its native range in
southeastern Asia and is known to cause high mortality on both wild and culti-
vated cycad species that are not evolutionarily and ecologically adapted to the
effects of its infestation. Currently, neither the extent of the spread in Japan
nor the attendant ecological impacts are well characterized; thus, several rec-
ommendations to mitigate the potential threat are proposed here. Monitoring
the impact of the scale pest and evaluating the use of native predators as bio-
logical control organisms for A. yasumatsui are recommended. Considering the
already known genetic diversity and spatial genetic structure of C. revoluta, we
recommend establishing in situ and ex situ colonies to assure the conservation

of its genetic composition in case of loss of populations.

conservation, cycads, invasive species, island biogeography, pest control

agroecological, and symbolic identity of the local culture
(Englehardt & Carrasco, 2023; see also Englehardt et al.
2024). For example, people from the Ryukyu Islands have
used cycads as a source of food that was especially
needed during times of famine, have used cycads as wind
and sea breaks to protect fields and other food crops
(Kira & Miyoshi, 2000; Kogure, 2022), and have given the
cycads a symbolic and sacred significance that has been
preserved to date. Nowadays, C. revoluta is cultivated in
shrines, temples, public and private gardens, and as a
container and bonsai subject. Young plants and seeds of
C. revoluta are widely propagated for worldwide export.
Cycas revoluta is found as an outdoor landscape plant in
countries with an appropriate climate and as a potted
plant in countries with cooler temperatures. Thus,
C. revoluta is arguably the most cultivated cycad species
globally (Donaldson, 2003; Thieret, 1958).

Cycas revoluta has become popular worldwide not
only due to its aesthetic value as a garden plant, but also
due to the unique and appraised set of biological charac-
teristics shared with other cycads that evidence them as
evolutionarily conservative plants (Gutiérrez-Ortega
et al., 2024; Ito-Inaba et al., 2019). For example, many
cycad species, including C. revoluta, can grow in soil con-
ditions that might not be optimal for other plants
(Marler & Calonje, 2020a). One physiological explanation
for this resilience in poor soils is that all cycads employ
symbiotic relationships with cyanobacteria, housed in
root structures termed coralloid roots, which capture and
convert atmospheric nitrogen into a useable form for
plant use (Gutiérrez-Garcia et al., 2019; Norstog &
Nicholls, 1997). This function may also improve soil
nutrient composition, benefitting other plants growing
near cycads (Marler & Calonje, 2020a). Another feature
that makes cycads attractive for biologists and ecologists
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FIGURE 1
son, Amami-Oshima. Credit: Jui-Tse Chang.

Healthy Cycas revoluta plants in habitat in Uken-

is their association with insects. The association with
thrips and beetles as brood-pollination mutualists has
gained attention to clarify the evolutionary consequences
of symbiosis (Salzman et al., 2020; Terry et al., 2012;
Toon et al., 2020). Additionally, several herbivorous
insects have co-evolved to feed specifically on cycad hosts
(Prado, 2011).

In 1972, a new species of cycad-specific scale insect
was discovered on cultivated C. revoluta plants in
Thailand and formally described as Aulacaspis yasumatsui
Takagi (Takagi, 1977). A. yasumatsui is commonly known
as the cycad aulacaspis scale (CAS) and will hereafter be
referred to as such. Cycad aulacaspis scale feeds on the sap
of cycads. The infestation often begins by crawlers, the first
instar of the insect, settling on the leaflets and progresses
through the rachis and petiole until covering the whole
body of the plant within a few months. All plant parts,
including the coralloid roots, are attacked by the insect.
Cycad aulacaspis scale causes damage by depleting the
non-structural carbohydrates from all organs (Marler &
Cascasan, 2018), causing stress that desiccates the plants
until death. Cycad aulacaspis scale is native to Southeast
Asia, ranging from the Andaman Islands to Vietnam
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FIGURE 2 The Ryukyu Islands, Japan. The locations of
Amami-Oshima, Okinawa-jima, and specific locations mentioned
in the text are indicated.

(Marler et al., 2021). Within its native range, this insect
usually does not cause plant mortality, and several of us
(A. Lindstrém, B. Deloso, T. Marler, W. Tang, R.D. Cave)
have observed parasitoids within this range that presum-
ably have co-evolved with CAS and might control the
populations. Outside its native range, CAS has become a
serious threat to cycad diversity, as we explain below. A
recent invasion by CAS on the islands of Amami-Oshima
and Okinawa-jima (Figure 2, Figure 3) has prompted con-
cern among cycad biologists and enthusiasts alike. Reports
by the webpage of Kagoshima Prefecture (2024) confirm
that CAS has been spreading in wild populations of
C. revoluta since at least November 2022. Given the ability
of CAS to rapidly spread among wild cycad populations,
we expect that the pest will become a serious threat in sev-
eral other islands if prompt action is not taken. This paper
aims to direct attention to this potentially serious ecologi-
cal threat and to make recommendations based on the
knowledge obtained from previous CAS invasions in other
countries.

2 | CYCAD AULACASPIS SCALE
AND ITS PRIOR INVASIONS IN
OTHER COUNTRIES

In 1995, CAS was detected in southern Florida, USA,
where it decimated many cultivated Cycas species,
including C. revoluta, with infestations rapidly covering
leaves, stems, and reproductive parts (Walters
et al., 1997). Within 2 years, tens of thousands of large,
well-established specimens of cultivated C. revoluta in
southern Florida were killed by this infestation (Howard
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FIGURE 3
scale near Kuninao, Amami-Oshima. Photo taken on July 30th,
2024. Credit: Benjamin Deloso.

Cycas revoluta plants infested by cycad aulacaspis

et al., 1999; Tang, pers. obs.). In 2000, CAS was detected
in Taiwan, where 62% of adult plants in one population
of the native Cycas taitungensis C.F.Shen, K.D.Hill, C.H.
Tsou & C.J.Chen (= C. revoluta, as currently circum-
scribed [Chang et al., 2022]) were killed by CAS within a
few years (Liao et al., 2018).

Because of the spread of CAS and its devastation to
cycads in Florida and Taiwan, Marler (2000) predicted
that CAS posed an imminent threat to Cycas micronesica
K.D Hill populations on the island of Guam. Unfortu-
nately, CAS was detected in 2003 in the tourist district of
upper Tumon on Guam and quickly spread into nearby
C. micronesica habitats. In Guam, 88% of mature wild
C. micronesica plants were killed by CAS within 5 years
(Marler & Krishnapillai, 2020). Cycas micronesica went
from the most abundant tree in Guam's forests to being
listed as endangered by the IUCN within 5 years of the
invasion (IUCN Red List: Marler et al., 2010). This prece-
dent serves as a cautionary tale for C. revoluta popula-
tions in Japan. Although the IUCN conservation status of
C. revoluta is currently least concern (LC) (Hill, 2010),
the situation may deteriorate without effective action.

3 | CYCAD AULACASPIS SCALE
INVASION ON CYCADS IN JAPAN

The first record of CAS in Japan is from Amami-Oshima,
and the scale is spreading across the island (Figure 3)

FIGURE 4 One of the wild Cycas revoluta populations in

northern Amami-Oshima shows a possible ongoing local
extinction. Photos were taken on (a) 15 June 2023 and
(b) 11 February 2024. Credit: Jui-Tse Chang.

(Kawaguchi et al., 2024; Takagi, 2023). Since March 2023,
CAS is also present in Okinawa Prefecture (Okinawa
Times, 2024). Based on the massive die-off of C. revoluta
and C. micronesica plants caused by CAS in Florida and
Guam, respectively, large numbers of this cycad in the
Ryukyu Islands are expected to succumb in the coming
years without intervention by Japanese conservationists
and authorities. As it was in the case of Guam, there is
expected to be a long debate on what to do about the inva-
sion of CAS into C. revoluta habitats in Japan. There may
be conflicting opinions about appropriate courses of action
to take regarding this alien invasion of CAS. The insect
has a life cycle from egg to adult female of 32-40 days at
about 25°C; hence, CAS can quickly develop dense popu-
lations on C. revoluta (Cave, Sciacchetano, & Diaz, 2009;
Howard et al, 1999). Temporal snapshots across
10 months in northern Amami-Oshima have already
shown local extinction in some areas (Figure 4). There is
an urgent need for an early, unified response to CAS.
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4 | AVOIDANCE OF FURTHER
SPREAD

One of the priority responses to manage invasion is to
limit the spread of CAS. The first instar of armored scales
(the crawler stage) is the developmental stage associated
with medium- to long-distance dispersal via wind cur-
rents or passive hitchhiking on passing animals, includ-
ing humans (e.g., carried on clothes), a process known as
phoresis (Marler et al., 2020). Cycad aulacaspis scale also
spreads to new localities via transport of infested plants.
Therefore, we recommend the immediate prohibition of
transport of cycad plants among islands, as we still do
not know the source of the invasion (see also
Takagi, 2023). Until the extent of the spread is better
understood, we also recommend that visitors to culti-
vated or natural cycad groves (e.g., Ankyaba and Aya-
maru Misaki in Amami-Oshima; Daisekirinzan in
northern Okinawa-jima) be restricted so as to contain
further spread of CAS. A drastic measure would be to
remove individual cycads cultivated along roads in the
Ryukyu Islands to avoid stepping-stone dispersal of CAS
to wild populations.

5 | SMALL-SCALE USE OF
PESTICIDES

Pesticides to treat infested cycad plants in the landscape
have been used. The conventional pesticide pyriproxifen,
an insect growth regulator that prevents immature
insects from attaining adulthood and thus rendering
them unable to reproduce, was reported to be effective in
controlling CAS without damaging the host plant
(Emshousen et al., 2004). In Costa Rica, tests with six
brands of locally available soaps suggested that some
brands were effective at killing adults and crawlers and
reducing CAS infestations (Blanco-Metzler & Zuiiga
Orozco, 2013). These treatments, although costly and
time-consuming to apply, may be useful in controlling
CAS in small-scale landscapes, and thus this is an area of
research that should be expanded in the future. However,
the impact of large-scale pesticide use on wild cycad
populations is not recommended due to potential impacts
on pollinating insects and the development of pesticide
resistance in the target pest (Tang et al., 2005).

6 | ASSURANCE COLONIES

We recommend immediate seed collection from CAS-
infested C. revoluta populations to preserve germplasm
via ex situ conservation. The priority is to establish

germplasm repositories within Japan, with accessions
representing as many populations as possible. Addition-
ally, several botanical gardens outside of Japan have
extensive collections of cycads. These institutions include
the Montgomery Botanical Center in Coral Gables, Flor-
ida, USA; the Francisco Javier Clavijero Botanical Gar-
den in Xalapa, Mexico; and the Nong Nooch Tropical
Botanical Garden in Chon Buri, Thailand, to name a few.
These and other botanical gardens could assist in con-
serving C. revoluta genetic diversity from populations
under threat from CAS, especially including both genetic
diversity across the previously reported genetic boundary
(Chang et al., 2022, 2023).

Cycad seeds are recalcitrant and generally cannot be
stored long term in traditional seedbanks, although
Nadarajan et al. (2018) suggested that some species may
exhibit an orthodox response to brief storage periods at
-20°C. This remains to be verified for seeds of C. revoluta.
Cycas revoluta seeds have shown optimal germination
when sown in temperatures ranging between 25°C and
30°C (Frett, 1987). Additionally, seeds of C. revoluta have
been reported to have germination rates of 92% germina-
tion after 6 months of air-dry storage at 2°C, compared
with 42% germination when stored at 22°C (Dehgan &
Schutzman, 1989). Modest seed collection from wild
populations has been suggested to have no negative
demographic impacts; in fact, multiple seed collections
over several years may be required to capture the most
genetic diversity of a population destined for an ex situ
collection (Griffith et al., 2017). Additionally, seeds from
healthy parent plants are the most desirable. Experience
from C. micronesica on Guam showed that seeds originat-
ing from plants infested with CAS displayed lower germi-
nation rates, and the resulting seedlings had reduced
vigor and slower growth than those from uninfested
seeds (Marler, 2021). The mechanisms that cause this dis-
parity in seedling growth are unknown, but seedlings
resulting from CAS-infested C. revoluta seeds may exhibit
similar growth behavior. We therefore recommend seed
collection from as many populations as possible before
the health of the adult plants is further compromised.
Any seeds collected from CAS-infested C. revoluta plants
should be fully cleaned prior to transport to nursery
locations.

Another approach to starting ex situ cycad popula-
tions is through stem cuttings. Cycads are easily propa-
gated from stem cuttings (Deloso et al., 2020; Deloso,
Paulino, & Marler, 2020; Marler et al., 2020). An advan-
tage of this approach is that stem cuttings would better
capture the overall genetic diversity of the population
versus only seed collection (Griffith et al., 2015; Griffith
et al., 2020). This is because the collection of seeds repre-
sents only the individuals that successfully reproduced
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during that particular reproductive cycle. Additionally,
all cycad genera, except for members of the tribe Ence-
phalarteae (Encephalartos, Lepidozamia, and Macroza-
mia), produce terminal male strobili and therefore
undergo anisotomous branching (Stevenson, 1992). This
subsequent male branching behavior in cycads may have
conservation implications if the sex of a plant can be veri-
fied before stem cuttings are collected in situ to better
represent a more balanced sex ratio in an ex situ collec-
tion (Marler & Calonje, 2020b). This branching behavior
can formulate stem collection protocols in C. revoluta
habitats for future ex situ conservation. Many Cycas
populations display low genetic diversity at the popula-
tion level (Wang et al., 2019; Xiao et al., 2005; Zheng
et al., 2017). In C. revoluta, population genetic diversity
was lower in the north of the genetic boundary, including
Amami-Oshima, where the CAS outbreak occurred
(Chang et al., 2022, 2023). We therefore urge higher pri-
ority for Amami-Oshima population conservation com-
pared with Okinawa-jima due to this reduced genetic
diversity and recommend collection of both seed and
stem cuttings to ensure a more robust representation of
the genetic diversity of C. revoluta. Stem cuttings taken
from CAS-infested areas should be treated with pesticides
prior to transport to nursery areas.

7 | ASSESSING THE POSSIBLE
IMPACT OF CLIMATE CHANGE

In the context of ongoing climate change and globaliza-
tion, the spread of invasive species, such as CAS, poses
an emergent threat to the native ecosystems of the Ryu-
kyu Islands. Populations of C. revoluta in the northern
Ryukyu Islands appear more genetically distinct, while at
the perspective of CAS invasion potential, populations
south of the genetic boundary are more vulnerable,
according to present and future climatic scenarios
(Satishchandra & Geerts, 2020; Wei et al., 2018). In
response, we advocate using species distribution models
(SDMs) while considering the recently infested localities
in Amami-Oshima and Okinawa-jima to predict potential
future sites susceptible to CAS invasion in Japan
(Bebber, 2015). These models, rooted in the relationships
between current species distribution records and environ-
mental variables, provide a spatial representation of areas
with favorable conditions for the dispersion of the inva-
sive species (Kearney & Porter, 2009). Their application
would allow authorities and natural resource managers
to anticipate and strategize for management and mitiga-
tion, focusing efforts on high-risk areas (West
et al., 2009). Incorporating SDMs into these islands’ con-
servation strategy is a proactive measure and a long-term

investment in protecting biodiversity and the ecological
balance of these delicate insular ecosystems (Pang
etal., 2021).

8 | BIOLOGICAL CONTROL

We recommend the Japanese government fund a dedi-
cated biological control program as the best approach to
saving the C. revoluta populations in the long term.
Chemical pesticides are expensive, labor intensive, and
relatively ineffective for controlling CAS (Emshousen &
Mannion, 2004); they are not recommended as a long-
term control technique in wild cycad populations due to
cost and adverse secondary effects in the ecosystem
(Tang et al., 2005). Instead, two decades of research on
classical biological control of CAS suggest that this is
likely the best and perhaps only effective means to con-
trol this pest in infested areas into the future (Tang &
Cave, 2016). However, research is still necessary to evalu-
ate the effectiveness and risks of the biological control
strategy in the Ryukyu Islands, and this may require an
international, multiagency effort and the participation of
biological control experts.

Classical biological control is an old and proven tech-
nique for the control of insect pests, especially scale
insects (Rosen, 1973). In this technique, entomologists
visit the native habitat of an insect pest and identify its
natural enemies. These natural enemies are then studied
in a quarantine facility to determine under what condi-
tions, such as temperature and humidity, they are most
effective. Also, these laboratory studies determine what,
if any, nontarget plants and insects these natural enemies
might eat. Classical biocontrol is safe with proper
research and safeguards, with few to no significant nega-
tive side effects. For example, a historical review of bio-
control efforts in Florida involving the introduction of
59 arthropods and one nematode showed that this
approach has had minimal documented effects on non-
target organisms (Frank & McCoy, 2007). Likewise, a
global review of more than 5000 introductions, involving
about 2000 species of arthropod agents for the control of
arthropod pests in 196 countries and spanning 120 years
(Van Lenteren et al., 2006), found that they rarely had
negative environmental effects. We understand, however,
that there are concerns regarding the application of bio-
logical agents as control for pests. Releasing exotic spe-
cies in vulnerable ecosystems such as islands may result
in irreversible ecological damage (Louda et al., 2003).
Therefore, appropriate specificity tests, risk assessments,
and attentive priority to host-specific biological control
agents (over generalists) and native species (over exotic
ones) should be considered before the application of this
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technique on C. revoluta. As a further safeguard, any
release of biocontrol agents should be linked to long-term
monitoring of the populations and a continuous evalua-
tion of its effectiveness and any negative impacts.

Within the native range of CAS, several of us
(A. Lindstrom, B. Deloso, T. Marler, W. Tang, R.D. Cave)
have observed potential biological control agents that
might prevent CAS from causing fatal injury to the plant.
The lady beetle Phaenochilus kashaya Giorgi and Van-
denberg (Coleoptera: Coccinellidae) was discovered in
Thailand in 2007 (Cave, Nguyen, et al., 2009; Giorgi &
Vandenberg, 2012). The cycads in the dipterocarp forests
where the beetle occurs were sparsely infested with CAS
or had no scales (R. D. Cave personal observation). Labo-
ratory studies indicate the beetle is a voracious consumer
of CAS and a quite fecund predator (Manrique
et al., 2012). In contrast, Rhyzobius lophanthae Blaisdell
(Coleoptera: Coccinellidae) consumes fewer scales and is
less fecund (Thorson, 2009). This predaceous lady beetle
was released on Guam in 2005 and had limited success in
controlling CAS (Marler et al., 2013; Moore et al., 2005).
No recent attempts have been enacted to augment the
established biological control on Guam (Deloso, Terry,
et al., 2020; Marler et al., 2021).

Song et al. (2012) proposed two Southeast Asian Cybo-
cephalus species (Coleoptera: Cybocephalidae) as poten-
tial biological control agents for CAS in Taiwan.
Cybocephalus nipponicus Endrody-Younga has a wide
distribution and is well known as a predator of armored
scale insects (Hisamatsu, 2015), including CAS (Smith &
Cave, 2006). This predator already exists in the Ryukyu
Islands, including Amami-Oshima (Hisamatsu, 2015).
The tiny beetle is widespread throughout eastern China,
Vietnam, and Thailand but also occurs on southern
Pacific islands, the eastern USA, the West Indies, and
South Africa (Smith, 2022). Recently (July 2024), surveys
on Amami-Oshima and Okinawa-jima found seven spe-
cies of lady beetles and one species of Cybocephalidae on
CAS-infested C. revoluta (R.D. Cave, B. Deloso, T. Marler,
and S. Nagata personal observation) but no parasitoids
nor evidence of parasitism. We recommend that addi-
tional CAS predator and parasitoid surveys be conducted
on Amami-Oshima and Okinawa-jima to confirm if
C. nipponicus or other predators and parasitoids of
armored scales exist and how they might affect the popu-
lation sizes and dynamics of CAS on these islands. After
these surveys are conducted, the new findings may
inform further recommendations for biological control.

Using history as a lesson, Taiwan's past experiences
showed moderately successful management of CAS with
biological control. After the invasion of CAS to
C. revoluta populations in Taiwan, physical and chemical
controls were applied first with some success in

managing the invasion (Forestry and Nature Conserva-
tion Agency, 2016). Subsequently, in 2003, the non-native
C. nipponicus was introduced from Thailand. Following a
rigorous risk assessment, including greenhouse experi-
ments to test host specificity and effectiveness, the beetles
were reared in large numbers before being released into
the natural habitat since 2006 (Hsu, 2008). High host
specificity was observed in C. nipponicus, suggesting
potentially low ecological impact on nontarget species.
The release of approximately 410 600 C. nipponicus indi-
viduals over 5 years, accompanied by physical and chem-
ical controls on 500 and 2000 C. revoluta individuals,
respectively, resulted in the control of CAS but did not
lead to its eradication (Ministry of Agriculture, 2011). In
the meantime, further field surveys for native natural
enemies found an additional species, Cybocephalus poli-
tissimus politissimus Reitter (= Cybocephalus flavocapitis
T.R. Smith), although further evaluation was not per-
formed (Hwang, 2008).

Castillo et al. (2011) tested the entomopathogenic fun-
gus Cordyceps javanicus (Frieder. and Bally) Kepler,
B. Shrestha and Spatafora (Hypocreales: Cordycipitaceae)
(referred to as Isaria fumosorosea Wize [PFR97® strain]
in the publication) against first instars of CAS at two tem-
peratures in the laboratory. The LCs, at 20°C and 30°C
were 6.1 x 10° and 5.3 x 10° blastospores/ml, respec-
tively. The lethal time to kill 50% of the test population
was shorter at 30°C than at 20°C. Cordyceps javanicus
may be an additional tool for management of CAS, but
field tests need to be conducted.

In summary, the biological control approach aims to
understand the ecological conditions and natural biologi-
cal control agents that are best for bringing natural envi-
ronmental balance to a disturbed ecosystem. Alien pests
are reunited with their natural enemies to re-establish a
natural predator—prey system. So far, research has identi-
fied at least five natural enemies of CAS that may be
effective biocontrol agents in the native C. revoluta

FIGURE 5

Larva of the lady beetle Rhyzobius lophanthae.
Credit: Ronald D. Cave.
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FIGURE 7 Mummified cycad aulacaspis scale with the
parasitoid wasp Coccobius fulvus inside. Credit: Ronald D. Cave.

ecosystems of Amami-Oshima and Okinawa-jima. These
natural enemies are the predatory lady beetles
R. lophanthae (Figure 5) and P. kashaya (Figure 6), the
minute predatory beetle C. nipponicus, and the parasitic
wasps Coccobius fulvus (Compere & Annecke) (Figure 7)
and Arrhenophagus chionaspidis Aurivillius
(Hymenoptera: Encyrtidae) (Tang & Cave, 2016)
(Figure 8). The two wasps are widespread throughout
mainland Southeast Asia. Phaenochilus kashaya has not
yet been tested outside of its native range on CAS-
infested Cycas populations, but it holds promise.

Success or failure of a biological control agent in a
specific region cannot be considered guaranteed success
or failure in another region that experiences different
ecological, climatological, and socioeconomic conditions.

FIGURE 6 Adult(a) and larva
(b) of the lady beetle Phaenochilus
kashaya, a voracious feeder on cycad
aulacaspis scale. Credit: Ronald

D. Cave.

FIGURE 8 Inflated second instars of cycad aulacaspis scale
parasitized by Arrhenophagus chionaspidis. Credit: Ronald D. Cave.

For untried agents that have been studied only in the lab-
oratory, we cannot really know if they will establish and
be effective in the field until they are properly introduced
into the new environment and monitored. Therefore, it is
imperative that all natural enemies of CAS be considered
as candidates for introduction to the Ryukyus, and then
carefully chosen candidates, whether or not they have
achieved success elsewhere, should be released as soon as
possible.

9 | CONCLUSION

The ongoing CAS invasion in Japan should be considered
a serious threat to biodiversity and the local culture sur-
rounding the species C. revoluta. The long-term ecosys-
tem level effects of the CAS invasion are unknown and
warrant more research. Evidence from other invaded
islands demonstrates that delayed actions to manage CAS
can have severe consequences. While ex situ conservation
strategies are essential to ensure the species' long-term
survival in case of total loss in the wild, preserving
C. revoluta populations in situ should take priority. This
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means ensuring that CAS does not spread to other islands
within the Ryukyu Islands and Kyushu. Because of its
cosmopolitan use as a horticultural plant and its great
importance in the history and ethnobiology of Japanese
culture, C. revoluta is possibly the most iconic cycad spe-
cies worldwide. In Japan, there is an opportunity for
prompt, concerted intervention to ensure the future sur-
vival of this species in its native habitat.
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