Qin, Z., Wu, J., Qiu, B., Ren, S.X, & Ali, S. 2011 Effects of host plant on the development, survivorship and reproduction of Dysmicoccus neobrevipes Beardsley (Hemiptera: Pseudoccocidae). Crop Protection 30:1124-1128
Notes: The effects of four host plants (Agave sisalana, Ag. americana var. marginata, Ananas comosus Baili and An. comosus Smooth Cayenne) on the biology of the mealybug Dysmicoccus neobrevipes Beardsley were studied in the laboratory at 26±1°C, 75-90% RH and 14:10 (L:D) photoperiod. The development, survivorship, longevity, reproduction and life table parameters of D. neobrevipes differed among the host plants. The shortest developmental period (from the first instar nymph to adult) was recorded on An. comosus Smooth Cayenne (22.4 days for females and 21.3 days for males), whereas the longest was recorded on An. comosus Baili (25.6 days for females and 24.7 days for males). The highest survivorship was found on An. comosus Baili (98% for both females and males) and the lowest was on Ag. americana var. marginata (39.6% for females and 50% for males). Meanwhile the sex ratio and fecundity were highest and the pre-lay period was shortest on Ag. sisalana. The longest longevity of females was 62.5 days on An. comosus Baili, whereas the other host plants did not differ significantly with grand mean longevities of 51.0 days for females, while the longest and shortest longevities of males were 4.6 days and 2.3 days on Ag. americana var. marginata and Ag. sisalana, respectively. Values for net reproductive rate, intrinsic rate of increase and finite rate of increase were highest on Ag. sisalana, whereas the mean generation time was shortest on An. comosus Smooth Cayenne. The results indicated that Ag. sisalana is the most suitable host for D. neobrevipes among the four tested plants. When reared on Ag. sisalana, D. neobrevipes had a short developmental period (females 22.7 days and males 23.8 days), high reproduction (418 nymphs/female) and a high intrinsic rate of increase (0.106). Results of this study indicated that host plant can largely influence the population dynamics of D. neobrevipes, and our findings are useful in understanding the roles of host plants in integrated management of this pest, including exploitation of these host plants in push-pull control.