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Abstract
Although density-dependent benefits to hemipterans from ant tending have been measured

many times, few studies have focused on integrated effects such as interactions between

ant tending, natural enemy density, and hemipteran density. In this study, we tested wheth-

er the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants

(Tapinoma melanocephalum), the presence of parasitoids, mealybug density, parasitoid

density and interactions among these factors. Our results showed that mealybug colony

growth rate and percentage parasitism were significantly affected by ant tending, parasitoid

presence, and initial mealybug density separately. However, there were no interactions

among the independent factors. There were also no significant interactions between ant

tending and parasitoid density on either mealybug colony growth rate or percentage parasit-

ism. Mealybug colony growth rate showed a negative linear relationship with initial mealy-

bug density but a positive linear relationship with the level of ant tending. These results

suggest that benefits to mealybugs are density-independent and are affected by ant tending

level.

Introduction
The relationship between hemipterans and ants is generally thought to be mutualistic because
both partners appear to benefit from an association [1]. Interactions between ants and hemip-
terans have been widely recognized and documented [2–5]. Ant tending improves the survival
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and the reproduction of aphid colonies, primarily by protecting the hemipterans from attack
by natural enemies. In exchange for tending the hemipterans, ants receive large amounts of
honeydew in a consumer-resource mutualism [2, 6]. Mutualisms can persist surprisingly well
when the trade-offs between the cost and the benefit are in balance [7]. Many studies have
shown that the stability of mutualisms can be affected by numerous factors, such as the density
of the ants and hemipterans [8–10], host quality [11–12] and populations of hemipteran ene-
mies [13–14]. The costs and benefits between the mutual partners vary greatly in both space
and time, inevitably causing outcomes within most interactions to vary as well [15].

Benefits from mutualisms are usually dependent upon variations in the environment and
the density of the interacting species [16]. For example, interactions between Heliconius butter-
flies and their Mullerian mimics benefit one another at a low density, but this advantage is lost
at higher density [17]. Ant tending significantly increases the growth of low-density aphid pop-
ulations, but the positive effect of ant tending decreases as aphid density increases [8]. Al-
though a few studies of ant-hemipteran mutualisms have reported the patterns of density-
dependent benefits to hemipterans [8–9, 18], most of the studies focused just on the individual
factors affecting the benefits to hemipterans. For example, Morales (2000) documented that
benefits to the treehopper Publilia concava depends on the density of treehoppers [10]. Similar
studies have also demonstrated density-dependent benefits in different mutualistic systems,
such as the interaction between Aphis varians and Formica cinerea [8] or Publilia modesta and
Formica altipetens [9]. However, the services to hemipterans provided by ant tending can vary
concurrently with changes in multiple factors. Heretofore, no studies have experimentally ad-
dressed the role of ant tending, hemipteran density, enemy density, and their interactions in
generating patterns of mutualism.

The mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is native to the
United States [19] but caused serious damage to cotton in India and Pakistan in 2005 [20].
Currently, the mealybug is an important invasive species in China [21]. The ghost ant Tapi-
noma melanocephalum is a worldwide invasive species for which the native range is unknown
but is believed to be Africa or Asia [22]. The ghost ant is highly adaptable in its nesting habits
and has been in China for a long time. These ants are fond of honeydew and tend honeydew-
excreting insects [23]. Our previous studies have shown that ghost ants have established a close
relationship with P. solenopsis in China, and the persistence of the mutualistic relationship
under low mealybug density is greater than that under high density [5]. The parasitoid Aena-
sius bambawalei is an important enemy of P. solenopsis in China [24]. A. bambawalei has also
been reported as a solitary endoparasitoid of P. solenopsis [25–27]. It is also the most dominant
and aggressive parasitoid reported thus far [28–29]. The performance of A. bambawalei was
significantly reduced by ghost ant tending [30]. Those results may suggest that mutualism be-
tween T.melanocephalum and P. solenopsis is conditional and affected by multiple factors.
While this form of conditional mutualism has received less attention, there are a few examples
in the literature.

In this study, we conducted a series of experiments to test the effects of ant tending, mealy-
bug density, parasitoid density, and their interactions on the benefits to the mealybug. Further-
more, we examined the relationship between the level of ant tending and the benefits to the
mealybug.

Materials and Methods

Plants and Insects
Cotton plants were cultivated in plastic flowerpots (18 cm × 14 cm × 17 cm) in a greenhouse.
Each plant was approximately 25 cm in height and had 20 true leaves. Colonies of P. solenopsis
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were collected from the campus of South China Agricultural University and placed on the cot-
ton plants. The 1st instar mealybug nymphs were inoculated on the cotton and raised for sever-
al generations. The mealybug colonies were reared in the laboratory with the temperature
maintained at 27±2°C and a relative humidity of 60–70%. Colonies of ghost ants were collected
from experimental fields of South China Agricultural University in the suburbs of Guangzhou
(113°37056”E, 23°1402200N). The colonies were separated from the soil by dripping water into
plastic boxes containing soil and ants until the ant colonies floated [31]. One subcolony (ap-
proximately 1.0 g) from each colony was prepared using a microbalance (Sartorius, BS, 224S).
Each subcolony included one queen, adult workers (approximately 1500 individuals), pupae,
larvae, and eggs. The ants were placed in a 9-cm plastic petri dish, which served as an artificial
nest. The T.melanocephalum subcolonies were maintained with distilled water plus a 10%
honey solution, which was distributed through tubes. An enemy of P. solenopsis, the parasitoid
Aenasius bambawalei was also collected fromHibiscus rosa-sinensis in the experimental field.
A. bambawalei were collected as mummified mealybugs, which were separated into gel cap-
sules (10 mm in length) until adult emergence. Then, the wasps were randomly paired and al-
lowed to copulate. Copulation was observed in all pairings, and the fertilized female wasps
were used in the experiments 24 h after the initial pairing.

Experimental Design

Experiment 1: Effects of ant tending, parasitoids, and variation in
mealybug density on the benefits to mealybugs
Wemeasured the effects of ant tending (present/absent), parasitoid (present/absent) and the
initial mealybug density (low/medium/high) on mealybug colony growth. This experiment
used a full-factorial 3-way design. There were twelve combinations of ants (present/absent) ×
densities (low/medium/high) × parasitoids (present/absent). Each combination was repeated
ten times. We grew the cotton (20 true leaves and approximately 25 cm tall) in plastic boxes
filled with soil. Each plastic box was surrounded by a cage (70 cm × 70 cm × 100 cm) covered
with nylon netting. A subcolony of T.melanocephalum was placed in each plastic box, and the
ants constructed new nests in the soil immediately. The ants were given two mealworms and
water (50 mL) every two days. A different number of 2nd instar mealybugs were transferred
onto the cotton plants. Mealybug density on each plant was classified as low density (10 indi-
viduals per plant), medium density (50 individuals per plant), and high density (100 individu-
als per plant). The mealybug larvae were transferred onto the plants through small plastic
tubes with cotton plugs. When the plug was removed, mealybugs crawled out from the tubes
and began sucking the tender plant leaves on the top branches of each cotton plant. After 24 h,
two fertilized female parasitoids were placed on each selected caged plant. In our study, the par-
asitic pressure is defined as the number of parasitoids per plant, so the parasitic pressure is the
same among the treatments. The design was consistent with the study by Itioka and Inoue
[13], and the experiments lasted for 8 weeks. All surviving mealybugs and mummified mealy-
bugs on each plant were collected and counted. The effects of ant tending and mealybug densi-
ty on the colony growth rate of mealybugs were analyzed. We defined the colony growth rate
of mealybugs as the final population density divided by the initial population density. The par-
asitism rate was defined as the number of mummified mealybugs divided by the total number
of mealybugs (mummified and surviving mealybugs) on each plant. The mummified mealy-
bugs are easily identified by the decreasing wax and the body color of the mealybugs.
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Experiment 2: Effects of ant tending and variation in parasitoid density
on the benefits to mealybugs
In this experiment, we tested whether mealybug colony growth was affected by ant tending and
variation in parasitoid density. The procedures used in this experiment were similar to those
used in experiment 1. Thirty 2nd instar mealybugs were transferred onto each cotton plant (30
individuals per plant). After 24 h, fertilized female parasitoids were placed on each caged plant.
We assigned a different density of parasitoid to indicate different levels of parasitic pressure.
Parasitoid density on each plant was classified as low density (1 individual per plant) or high
density (4 individuals per plant). The treatments were as follows: 1) ant tending at low parasitic
pressure; 2) ant tending at high parasitic pressure; 3) low parasitic pressure without ant tend-
ing; and 4) high parasitic pressure without ant tending. All treatments were repeated 10 times.
After 8 weeks, we counted and recorded the surviving mealybugs and mummified mealybugs
on each plant.

Experiment 3: Relationship between the benefits from ant tending and
the level of ant tending
In this experiment, we examined whether the level of ant tending was influenced by the mealy-
bug density under parasitic pressure. We defined the ant tending level as the mean number of
tending ants per mealybug. On a gradient with a total of twenty densities, the initial population
density ranged from 10 to 200 mealybugs per plant. Each density included two treatments: 1)
mealybugs with parasitoids and with ant tending and 2) mealybugs with parasitoids and with-
out ant tending. In our experiments, the parasitic pressure is defined as the number of parasit-
oids per plant, so the parasitic pressure is the same between treatments. Two fertilized female
parasitoids were placed on each caged plant in this experiment. The experiment lasted for 8
weeks, and every two weeks we counted the number of surviving and mummified mealybugs
and the number of tending ants on the plant.

Statistical Analyses
To satisfy the preconditions of the analysis of variance, the data were transformed. The growth
rate of the mealybug colony was log-transformed, and the percentage of parasitism on the
mealybugs was treated by the arcsine square root-transformation. When the data were normal-
ly distributed and had similar variances, an analysis of variance (ANOVA) using the Type III
sum of squares was performed to compare the means among all measured variables. A linear
regression model was performed to analyze the relationship between benefits from ant tending
and the ant tending level. Analysis of covariance was used to test the difference in the slopes of
the linear model. All statistical analyses were conducted using SPSS version 14.0 (SPSS Inc.,
Chicago, IL).

Results

The effects of ant tending, parasitoids, and mealybug density on
mealybug colony growth and parasitism
Our results showed that the growth rate of the mealybug colony was significantly affected by
ant tending, parasitoids, and the initial mealybug density, separately (Table 1: Ant tending, Par-
asitoid, Density). The growth rate was obviously improved by ant tending (Table 1: Ant tend-
ing, Fig 1A, and S1 Dataset). In contrast, it showed a notable decrease with the presence of the
parasitoid or with a higher initial mealybug density (Table 1: Parasitoid, Fig 1B; Table 1: Densi-
ty, Fig 1C; and S1 Dataset). No significant interactions were found for ant tending and
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parasitoids, ant tending and mealybug density, and parasitoids and mealybug density, nor for
all three factors together (Table 1). The effect of ant tending and initial mealybug density signif-
icantly affected the percentage of parasitism (Table 2: Ant tending, Density). The percentage of
parasitism of mealybugs significantly decreased with ant tending but increased with increased
mealybug density (Table 2: Ant tending, Fig 2A; Table 2: Density, Fig 2B; and S1 Dataset).
However, the effect of interactions between ant tending and mealybug density on percentage of
parasitism was indistinct (Table 2: Ant tending × Density).

The effect of ant tending and parasitoid density on mealybug colony
growth and parasitism
The results showed that the effects of ant tending and parasitoid density on the colony growth
rate of mealybugs were significant (Table 3: Ant tending, Parasitoid density). Specifically, the
colony growth rate with ant tending was obviously greater than without ant tending (Table 3:
Ant tending, Fig 3A, and S2 Dataset). The colony growth rate under low parasitic pressure was
significantly greater than that under high parasitic pressure (Table 3: Parasitoid density, Fig
3B, and S2 Dataset). No significant effects on the colony growth rate of mealybugs were found
for the interactions between ant tending and parasitoid density (Table 3: Ant tending × Parasit-
oid density). In addition, ant tending and parasitoid density also significantly affected the per-
centage of parasitism (Table 4: Ant tending, Parasitoid density). The percentage of parasitism
without ant tending was obviously greater than that with ant tending (Table 4: Ant tending,
Fig 4A, and S2 Dataset). The percentage of parasitism under high parasitic pressure was signifi-
cantly greater than that under low parasitic pressure (Table 4: Parasitoid density, Fig 4B, and
S2 Dataset). However, the effect of the interactions between ant tending and parasitoid density
on the percentage of parasitism was not significant (Table 4: Ant tending × Parasitoid density).

Table 1. Analysis of variance of the mealybug colony growth rate with ant tending, parasitoid, and initial mealybug density.

Source of variation SS df MS F P

Ant tending 1.478 1 1.478 28.092 <0.001

Parasitoid 0.775 1 0.775 14.729 <0.001

Density 1.754 2 0.877 16.669 <0.001

Ant tending × Parasitoid 0.016 1 0.016 0.311 0.578

Ant tending × Density 0.060 2 0.030 0.566 0.569

Parasitoid × Density 0.080 2 0.040 0.761 0.470

Ant tending × Parasitoid × Density 0.015 2 0.007 0.138 0.871

Error 5.682 108 0.053

doi:10.1371/journal.pone.0123885.t001

Fig 1. Effect of ant tending, the presence of parasitoids, and initial mealybug density onmealybug colony growth. (A): Ant tending; (B): Parasitoid;
(C): Initial mealybug density.

doi:10.1371/journal.pone.0123885.g001
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The relationship between benefits from ant tending and ant tending level
The colony growth rate of mealybugs showed a negative linear relationship with the initial
mealybug density both in the presence and in the absence of ants (Fig 5A, Ants present: Y =
-0.033X+6.979, R2 = 0.679, P<0.001; Ants absent: Y = -0.007X+3.009, R2 = 0.377, P = 0.004;
and S3 Dataset), and there was a significant difference in the slopes of those two lines
(F = 19.323, df = 1, P<0.001). When the mealybug density was greater than approximately 150
individuals per plant, the growth rate of the mealybug colony on ant-tended plants was less
than that on untended plants (Fig 5A). In contrast, there was a positive linear relationship be-
tween the level of ant tending and the colony growth rate of mealybugs (Fig 5B: Y = 20.911X
+1.545, R2 = 0.515, P<0.001, and S3 Dataset). There was a negative linear relationship between
the percentage of parasitism and the level of ant tending (Fig 6: Y = -1.198X+0.359, R2 = 0.619,
P<0.001, and S3 Dataset).

Discussion
The benefits of ant tending to hemipterans are widely recognized. Although several studies
have analyzed the relationship between the benefits from mutualism and the density of hemip-
terans, the results were notably different. Several studies showed that a low density of hemipter-
ans benefited more from mutualism than a high density. For example, the difference in the
number of survivors between tended and untended treehoppers was highest in small aggrega-
tions and decreased significantly as the aggregation size increased [10]. Tending by F. cinerea
significantly improved the growth of small populations of A. varians, but the benefits from ant
tending decreased or disappeared at higher aphid densities [8]. The reason for the decline in
benefits may be that the ants were unable to respond to the rapid increase in aphid density. Ac-
tive recruitment behavior by ant workers did not increase substantially as the hemipteran den-
sity increased [32]. Ant workers had a limited requirement for honeydew, which may

Table 2. Analysis of variance of the percentage parasitism with ant tending and initial mealybug density.

Source of variation SS df MS F P

Ant tending 0.165 1 0.165 23.583 <0.001

Density 0.810 2 0.405 57.731 <0.001

Ant tending × Density 0.005 2 0.002 0.328 0.722

Error 0.379 54 0.007

doi:10.1371/journal.pone.0123885.t002

Fig 2. Effect of ant tending, the presence of parasitoids, and initial mealybug density on the percentage of parasitism. (A): Ant tending; (B): Initial
mealybug density.

doi:10.1371/journal.pone.0123885.g002
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contribute to the shortage of tending ants [32]. Lasius niger would even prey on the aphids
Lachnus tropicalis andMyzocallis kuricola when the aphid density increased [33] because ant
workers showed a significant preference for sugars of a different composition [34–35]. The
composition of honeydew is influenced by many factors, including the intensity of tending by
ants and the quality of the plants [34, 36]. Other studies demonstrated that hemipterans in
large aggregations benefited from ant tending more than hemipterans in small aggregations.
For example, the time that individual ants of L. niger were present on scale-infested twigs and
the total attendance time of the ants on scale-infested twigs increased significantly as the densi-
ty of Ceroplastes rubens increased [13]. Large aggregations of the membracid P.modesta
benefited more from tending by F. altipetens than the membracids in small aggregations [9].
Because the amount of honeydew produced is larger with higher hemipteran densities, the larg-
er amounts of honeydew attract a larger number of ants and increased tending levels [37]. Al-
though hemipteran density can influence the intensity of ant-hemipteran mutualisms in
opposite directions, the cause of the density dependence may be related to the relative number
of tending ants in both cases [38]. Previous studies also reported that hemipterans receive
greater benefits when tending levels are high [38–40]. Therefore, the pattern of a density-de-
pendent mutualistic system may be a combined function of the recruitment response of ants
mediated by the variation in the size of the hemipteran aggregation [10].

Our study measured whether the benefits to mealybugs from tending by the ghost ant was
density-dependent, including mealybug density and parasitoid density. The results showed
that the colony growth rate of mealybugs was obviously improved by ant tending, and notably
decreased with an increase in the initial mealybug density. However, there was neither an ant
tending × mealybug density interaction nor ant tending × parastoid density interaction in our
experiment (Table 1, Table 3), which may suggest that the benefits from ghost ant tending
were density-independent. Benefits to aphids from ant tending were closely related to the ant
tending level (the tending ants per aphid) [8]. Although some studies found a positive correla-
tion between ant foraging activity and the density of hemipterans on plants [3, 41–42], this

Table 3. Analysis of variance of the mealybug colony growth rate with ant tending and parasitic pressure.

Source of variation SS df MS F P

Ant tending 0.569 1 0.569 12.410 0.001

Parasitoid density 0.638 1 0.638 13.910 0.001

Ant tending × Parasitoid density 0.044 1 0.044 0.950 0.336

Error 1.650 36 0.046

doi:10.1371/journal.pone.0123885.t003

Fig 3. Effect of ant tending and parasitoid density onmealybug colony growth. (A): Ant tending; (B): Parasitoid density.

doi:10.1371/journal.pone.0123885.g003
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does not mean that ant tending levels have significantly improved. Our results demonstrated
that the positive effect of ant tending on mealybugs did not change significantly as the mealy-
bug density increased, which may suggest that the ghost ant tending level did not vary as the
mealybug density increased.

Our result also showed that benefits to mealybugs from ghost ant tending do not depend on
parasitoid presence or absence, or on parasitoid density. Whether the primary benefit from ant
tending is the protection of hemipteran colonies from natural enemies, the benefit is quite dif-
ferent with various mutualism systems. In some studies, mutualisms between ants and hemip-
terans primarily focus on protection from natural enemies as the critical means by which the
hemipterans benefit [2, 43]. Ant-tended aphids are under intense selective pressures because
the ant tending significantly increases the growth rate of aphid colonies when natural enemies
were present, and ant tending had a negative influence on the growth and reproduction of the
aphids when they were reared free from natural enemies [44–45]. Other studies found that ant
tending increased the reproductive output of aphids as a physiological benefit, even though en-
emies were absent [46–47]. It has been suggested that aphids most likely benefit from ant tend-
ing through the stimulation of their feeding rate rather than directly through a decrease in
predation rates [6, 48]. Ant-tended treehoppers outperformed untended treehoppers even with
predators excluded [10]. Our results showed that no significance was found for the interactions
between ant tending × parasitoid (Table 1), which may suggest that mealybugs benefited from
ant tending, not only by protection from parasitoids but also when parasitoids were absent.
There were also no interactions between ant tending and parasitoid density in our experiments
(Table 3). We infer that the effect of increasing parasitoid density is not strong enough to sig-
nificantly change the level of the protection by ghost ants.

Several studies have shown that the mutualisms between ants and hemipterans are condi-
tional and density-dependent. However, our results indicate that the mutualistic interactions
between ghost ants and the invasive mealybug is density-independent. Those results may be
the product of the given mealybug density in experiment 1 and 2. In addition, the number of

Table 4. Analysis of variance of the percentage parasitism with ant tending and parasitic pressure.

Source of variation SS df MS F P

Ant tending 0.157 1 0.157 14.874 <0.001

Parasitoid density 0.291 1 0.291 27.482 <0.001

Ant tending × Parasitoid density 0.005 1 0.005 0.462 0.501

Error 0.381 36 0.011

doi:10.1371/journal.pone.0123885.t004

Fig 4. Effect of ant tending and parasitoid density on the percentage of parasitism. (A): Ant tending; (B): Parasitoid density.

doi:10.1371/journal.pone.0123885.g004
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tending ants per mealybug may not have changed significantly as the mealybug density varied.
The level of ant tending affected the benefits to hemipterans, which is a widely accepted state-
ment [8–9]. Our results also indicated that there was a positive linear relationship between the
ant tending level and the growth rate of the mealybug colony (Fig 5B), which was consistent
with previous studies. The results showed that benefits to mealybugs from ant tending fall
more at high mealybug densities than at low densities (Fig 5A). The significant difference in
the slopes of the two lines may suggest that there was an interaction between mealybug density
and ant tending. This result contradicts the results of experiment 1, where no interactions were
found. We infer that interactions were only observed at higher mealybug densities, and in

Fig 5. Relationship betweenmealybug colony growth and level of ant tending. (A): Initial mealybug density and growth rate of the mealybugs; (B): Level
of ant tending and growth rate of mealybugs.

doi:10.1371/journal.pone.0123885.g005

Fig 6. Relationship between percentage of parasitism and ant tending level. * above bars indicates statistically significant differences between the two
treatments (P<0.05), different letters above bars indicate significant differences among the treatments (P<0.05).

doi:10.1371/journal.pone.0123885.g006
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experiment 1, we did not examine as wide a range of densities (the highest density was 100 in-
dividuals per plant). The pattern of ant-hemipteran benefits may be mediated by various fac-
tors, such as the recruitment response of ants, the response and the abundance of natural
enemies, and the hemipteran density. Our study adds to a growing number of studies that ex-
pound the mechanism of ant-hemipteran mutualisms.

Supporting Information
S1 Dataset. Colony growth rate and percentage parasitism of experiment 1.
(XLSX)

S2 Dataset. Colony growth rate and percentage parasitism of experiment 2.
(XLSX)

S3 Dataset. Colony growth rate, percentage parasitism and ant tending level of experiment
3.
(XLSX)
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