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Abstract: Lac is a type of natural resin secreted by lac insects and is widely used in the military and 
other industries because of its excellent adhesion and insulation properties. The main ingredients of 
lac are lactones and lactides, which are formed from hydroxy fatty acids and sesquiterpene esters. 
In this study, we measured lac secretion rates by the insect Kerria chinensis at different 
developmental stages and identified lac secretion-minimum and lac secretion-active stages of the 
insect. We then analyzed transcriptomes of lac secretion-minimum and lac secretion-active stages 
of the insect. Based on expression profiles of genes in different stages of the insect, we identified 
pathways and genes that are potentially involved in lac synthesis and secretion in K. chinensis. Our 
study lays a foundation for future studies to reveal the molecular mechanisms and pathways of lac 
synthesis and secretion in this beneficial insect. 
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1. Introduction 

Lac is a mixture of natural resins produced in and secreted by insects from the genius Kerria 
(Hemiptera: Kerriidae) [1]. The use of lac by humans can be dated back to centuries ago. Initially, lac 
was mainly used as wood finishing and as an adhesive for ceramics. At present, lac is used in the 
production of music instruments, insulation of electronics, coating of pharmaceutical pills, painting, 
material conservation, and various applications in the military industry [1]. Due to its strong 
adhesiveness, good insulation, moisture resistance, smooth film texture, non-toxic properties, and 
tastelessness, lac is expected to be continuously widely used in various industries in the future [2,3]. 

The composition of lac derived from different insect species varies. Host trees and 
environmental conditions can also affect the chemical composition of lac secreted even from the same 
insect species. In general, lac is mainly composed of lac resins, shellac waxes, laccaic acids, and other 
organic chemicals [2]. Lac resins are mixtures of lactones and lactides, which are formed from 
hydroxyl fatty acids and polyterpene esters [2]. 
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The biosynthetic pathway for polyterpene esters is the mevalonate pathway (MVA) in the 
cytoplasm [4,5]. In the mevalonate pathway, acetyl-CoA is converted into mevalonic acids by the 
action of hydroxymethylglutaryl-CoA synthase and hydroxymethylglutaryl-CoA reductase. 
Mevalonic acids are then converted to sesquiterpene acids by the action of terpene synthases (TPS). 
Sesquiterpene acids are then esterified to form sesquiterpene acid esters (Figure S1) [6]. Hydroxyl 
fatty acids are produced via the fatty acid synthesis pathway, which include steps catalyzed by fatty 
acid synthetases (FAS), elongases of very long chain fatty acid (ELO), and fatty acid desaturases 
(FAD) (Figure S1). Aleuritic acid (-9,10,16-erythro-aleuritic acid) is another important component of 
lac resins, and is synthesized from acetyl-CoA, again by fatty acid synthases [7]. 

The genius Kerria contains several species that are capable of secreting lac, including Kerria 
chinensis, K. lacca, K. yunnanesis, K. sindica, K. ruralis, K. pusana, and K. nepalensis. Different species are 
distributed in different regions, including Thailand, Myanmar, India, and China. One of the main 
species for lac secretion in South China is K. chinensis [2]. K. chinensis is an insect with distinct sexual 
dimorphism. Males and females are not only remarkably different in morphology and life cycle 
(Figure 1A), but also different in their ability to secrete lac. K. chinensis is born in two generations, 
including summer and winter generations, per year. The summer generation takes place from April 
to August, and the female first instar larvae is about 20 d, the second instar larvae is about 30 d, and 
the adult is about 90 d; the male instar larvae is about 20 d, the second instar larvae is about 20 d, the 
pupa is about 12 d, and the adult is about 8 d. The winter generation takes place from September to 
the following March and, the female first instar larvae stage is about 50 d, the second instar larva 
stage is about 70 d, the adult stage is about 90 d, the male first instar larvae stage is about 50 d, the 
second instar larvae stage is about 60 d, the pupal stage is about 20 d, and the adult stage is about 15 
d [1]. In the past few decades, scientists have made progress on revealing the polymerization and 
resin composition of lac produced by K. chinensis. Several studies were also carried out to characterize 
biology, ecological adaptability, host plants, and genetic diversity of lac insect [8–12]. However, the 
molecular mechanisms and biochemical pathways for lac synthesis and secretion are not yet known. 
K. chinensis is also a genomically understudied insect species, and no genome sequence nor 
transcriptomic data are available. 

In recent years, high-throughput sequencing technology has been widely used in gene mining 
and functional identification of various organisms. Insect transcriptome research has yielded fruitful 
results [13,14], such as Ericerus pela and Schlechtendalia chinensis [15–17]. However, the K. chinensis 
transcriptome was not reported, especially lac secretion genes. The objectives of this study are: (1) 
to generate transcriptomes with samples from different developmental stages of the insect for gene 
identification; and (2) to initially identify genes and pathways that are potentially involved in lac 
synthesis and secretion based on the transcriptomic data. 

2. Materials and Methods 

2.1. Insects 

K. chinensis was reared on Schleichera oleosa in the experimental station of Yuanjiang, Research 
Institute of Resource Insects, Yunnan province, China (102°00’46” E, 23°36´11” N). The female lac 
insects from larval stage (L), early adult stage (A1), and mid–late adult stage (A2) were collected and 
used for RNA extraction, library construction, and sequencing. Similar samples were also prepared 
for quantitative PCR analysis, and for individual assays to determine lac secretion rates. 

2.2. Measurement of Lac Secretion Rates 

Branches of host plants colonized densely with K. chinensis were cut and harvested as sticklac. 
The harvested sticklac was soaked in 95% alcohol until lac was completely dissolved into the alcohol 
solution, which was then filtered to separate insects and lac. Individual insects were counted and 
weighed. The weight of crude lac was derived by subtracting the weight of insect bodies from the 
sticklac weight. The average crude lac secreted per insect was obtained through dividing total crude 



Insects 2019, 10, 430 3 of 12 

 

lac by the number of insects. The rate of individual secretion was obtained through dividing the 
difference between crude lac secretion on the initial collection date and crude lac secretion on the 
final collection date by the number of days. Three different stage female samples were measured, and 
three independent biological replicates were conducted for each measurement. 

The average amount of lac secreted by individual insects was calculated by Formula (1), whereas 
the individual secretion rate was calculated by Formula (2). 𝑀 = 𝑚ଵ −𝑚ଶ𝑁  (1) 

In Formula (1), M represents the amount of individual secretion of the lac insects; m1 represents 
the total weight of lac and insects in a lac block (containing lac and insects); m2 represents the weight 
of insects in the lac block; and N represents the number of insects in the lac block. 𝑣 = 𝑀(௡ାଵ) −𝑀௡𝑡(௡ାଵ)ି𝑡௡  (2) 

In the Formula (2), v represents the individual secretion rate; Mn represents the amount of 
individual secretion in the nth time; M(n+1) represents the amount of individual secretion in the (n+ 
1)th time. Tn represents the nth acquisition time; and T(n+1) represents the (n+1)th acquisition time. 

2.3. RNA Extraction and Sequencing 

Total RNA from L, A1, and A2 stages was extracted using Trizol Reagent (Sangon Biotech, 
Shanghai, China) according to the method provided by the manufacturer. RNA quality was 
monitored on 1% agarose gels. RNA quantification and integrity were checked using a 
NanoPhotometer® spectrophotometer (IMPLEN, Westlake, CA, USA), and a Qubit® RNA Assay Kit 
(Sangon Biotech, Shanghai, China) in a Qubit® 2.0 Flurometer (Thermo Fisher Scientific, Waltham, 
MA, USA), and an RNA Nano 6000 Assay Kit (Sangon Biotech, Shanghai, China) on an Agilent 
Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA), respectively. A total amount 
of 3 μg RNA per sample was used for mRNA enrichment using magnetic beads with Oligo (dT). 
mRNA species were fragmented into short pieces with average size 150~200 bp. The fragmented 
mRNA pieces were used as templates for reverse-transcription with random hexamer primers and 
M-MuLV Reverse Transcriptase (RNaseH)- to synthesize the first strand cDNA. Second strand cDNA 
was synthesized subsequently using DNA Polymerase I (Sangon Biotech, Shanghai, China) and 
RNase H (Sangon Biotech, Shanghai, China). Remaining overhangs were converted into blunt ends 
via exonuclease/polymerase of polymerase I (Sangon Biotech, Shanghai, China). After adenylation of 
3′ends of the DNA fragments, AMPure XP beads were used for fragment size selection. cDNA 
libraries were obtained by PCR amplification, and the PCR products were purified by AMPure XP 
beads. Quality of the libraries was measured by Qubit2.0, Agilent2100, and q-PCR. After cluster 
generation, the libraries were sequenced on an Illumina HiseqTM2500 platform, and paired-end reads 
were generated. 

2.4. Data Analysis 

After sequencing, raw reads were subjected to credibility analysis. Sequences with a linker, 
sequences with N greater than 10%, and low-quality sequences (the number of bases with a mass 
value of Qphrd ≤ 5 more than 50% of the entire reads) were removed and discarded, and the 
remaining reads were referred as Cleans Reads. Q20, Q30, GC-content, and sequence duplication 
levels of the clean reads were calculated. All the downstream analyses were based on clean reads 
data. Transcriptome assembly was accomplished based on the de novo splicing of valid sequences 
[18]. The transcript sequence information was stored in FASTA format as a reference sequence for 
subsequent analysis using Trinity. 

2.5. Do Novo Assembly and Gene Annotation 
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Assembled unigenes were annotated by blasting against the NCBI non-redundant protein (Nr) 
database, NCBI nucleotide database (Nt), Swiss-Prot protein database (Swiss-Prot), Protein families 
database (PFAM), Kyoto Encyclopedia of Genes and Genomes (KEGG) database, Clusters of 
Orthologous Groups (COGs) database, and Gene Ontology (GO) database [19,20]. The e-value 
thresholds for Nr, Nt, and Swiss-Prot databases were 1e-5 and for KOG/COG database 1e-3. GO 
functional annotation was done using blast2go (b2g4pipe_v2.5). Annotation against the KEGG 
database was carried out using the KEGG Automatic Annotation Server (KAAS) with default 
parameters [21]. 

2.6. Quantitative PCR (qPCR) Analysis 

To validate the results of RNA-seq analysis, several genes were selected from K. chinensis 
transcriptome data to perform qPCR experiments. The list of gene-specific primers is shown in Table 
S1. Each reaction was carried out with 1 μL of a 1/20 (v/v) dilution of the first cDNA strand, 0.5 mM 
of each primer in a total volume of 25 μL. Amplification was performed with iQ SYBR Green 
Supermix (Sangon Biotech, Shanghai, China) on an iCycler real time detection system (Bio-Rad, 
Hercules, CA, USA) as the following thermal circles: 95 °C for 30 s followed by 40 cycles of 95 °C for 
5 s and 60 °C for 30 s. The unigene expression levels were calculated with the 2−ΔΔCT method [22]. Actin 
was selected as a reference for normalization of template concentration. Three independent biological 
replicates were carried out for each treatment. 

2.7. Analysis of Differential Expression Gene (DEG) 

Read counts were used to estimate the levels of gene expression. In order to reduce false 
positives, trimmed mean of M values (TMM) was used to standardize data processing. Differentially 
expressed genes were identified by DEGseq with q value < 0.005 and log2 (fold change) > 1 [23,24]. 

2.8. Data Availability  

We have deposited our data in the Sequence Read Archive (SRA) 
(http://www.ncbi.nlm.nih.gov/sra/); the accession for our submission is PRJNA489372. 

3. Results 

3.1. The Characteristics and Dynamic Regularity of K. chinensis 

Male and female larvae can only secrete a small amount of lac. The female is able to secret vast 
amounts of lac in the adult stage, whereas the male cannot secret lac any more both in the pupal and 
adult stages [1]. The lac secretion of K. chinensis in the whole summer generation was about 24.9 
mg/female (Figure S2). Through the determination of individual gum secretion rate in each stage, the 
results showed that the individual gum secretion rate was slower in the larval stage and increased 
gradually in the adult stage. In the early adult stage (A1), the individual fastest secretion rate was 
4.82 × 10−1 mg/d (Figure 1B), and the secretion decreased gradually in the mid–late adult stage (A2). 
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Figure 1. Life cycle and lac secretion stages. (A) Life cycles and sexual dimorphism of Kerria chinensis. 
The life cycle and morphology of males (Figure 1A, left part) and females (Figure 1A, right part) are 
different. Males have four life stages, including eggs (E), early instar larvae (L1), late instar larvae 
(L2), and adults (A). Females have five stages, including eggs, early instar larvae, late instar larvae, 
early stage adults (A1), and mid–late stage adults (A2). Morphologically, males and females are very 
different, especially at the adult stages. (B) Lac secretion of females at different stages. The Y-axis 
shows lac secretion rates and the X-axis shows the time when samples were collected. The arrows 
indicate the times and stages of samples collected for transcriptomic analyses. 

3.2. Overview of Transcriptomic Analyses 

Based on the characteristics and dynamic regularity of K. chinensis observations, a strategy of 
transcriptomic analyses was designed to identify candidate genes and pathways that are potentially 
involved in lac synthesis and secretion (Figure S3). The strategy was conducted to identify genes that 
are differentially expressed between lac secretion-minimum stage (L) versus lac secretion-active stages 
(A1 and A2). Those genes that are commonly up- or down-regulated in A1 and A2 in comparison with 
L are potentially involved in lac synthesis and secretion. Those genes that are differentially regulated 
between A1 and A2 in comparison with L are likely involved in other developmental regulations. 

Illumina sequencing of cDNA libraries generated a total of 24,897,365 raw reads covering a total 
of 126,059,825 nucleotides. After removing adapter sequences, ambiguous nucleotides and low-
quality sequences, 24,455,197 high quality reads were retained. The mean length of reads was 486 nt. 
The high quality reads were assembled into 183,899 unigenes, which had average size of 532 nt and 
N50 670 nt. Detailed statistics of spliced transcripts and assembled unigenes are shown in Table S2 
and Figure S4. These statistics were comparable with those of high standard transcriptomes from 
other well known insect species. 

To annotate the unigenes, a blastx search was carried out against the NR database with a cutoff 
E-value smaller than 10−5 (Table 1). A total of 54,037 unigenes (29.38% of all unigenes) returned above 
cutoff alignments when searched against the NR nucleotide database. Specifically, 71.6% of matched 
sequence alignments had E-values ranging between 1.0E−5 and 1.0E−60, and the remaining alignments 
were with E-values less than 1.0E−60 (Figure S5). The similarity of 7.2% sequence alignments ranged 
from 96% to 100%, 24.0% ranged from 80% to 95%, 46.9% ranged from 60% to 80%, 21.8% ranged 
from 40% to 60%, and only 0.1% ranged from 18% to 40% (Figure S5). The species distribution of the 
first hits was 10% with Acyrthosiphon pisum, 9.3% with Zootermopsis nevadensis, 7.2% with Nasonia 
vitripennis, 4.2% with Diaphorina citri, and 3.7% with Bombyx mori (Figure S5). In addition, the 
unigenes were similarly analyzed against other databases, and the results are summarized in Table 1 
as well. 
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Table 1. Annotation result statistics between unigenes and databases. 

Database Numbers of Unigene Percent (%) 
Nr 54,037 29.38 
Nt 18,328 9.96 

Swiss-Prot 49,924 27.14 
PFAM 49,642 26.99 
KEGG 30,464 16.56 
COG 36,724 19.96 
GO 50,406 27.4 

Annotated in all databases 8950 4.86 
Total unigenes 183,899 100 

Of the 183,899 unigenes, 50,406 were assigned to specific GO terms and classified into 19 
subcategories of ‘biological processes’, 15 subcategories of ‘cellular components’, and 12 subcategories 
of ‘molecular functions’ (Figure S6). The subcategories of ‘cellular process’, ‘cell’, and ‘binding’ were 
dominant in each of the three major categories, respectively. Analysis of the unigenes against the KEGG 
database, a network diagram of cell metabolic pathways, assigned 30,464 unigenes specific pathways 
(Figure S7). Among them, 15,460 unigenes were annotated to ‘metabolism’ (40.07% of the total), 3839 to 
‘environmental information processing’ (9.95%), 7929 to ‘genetic information processing’ (20.55%), 7162 
to ‘organismal systems’ (18.56%), and 4011 to ‘cellular processes’ (10.47%). 

Analysis of the unigenes against the KO database classified 30,464 unigenes (16.56% of all 
unigenes) to 32 KEGG pathways after removing unigenes associated with the human diseases. 
Among the classified unigenes, 272 were annotated to ‘metabolism of terpenoids and polyketides 
pathway’, include 142 unigenes involved in ‘terpenoid backbone biosynthesis (PATHWAY: 
ko00900)’, 10 unigenes involved in ‘sesquiterpenoid and triterpenoid biosynthesis (PATHWAY: 
ko00909)’, one unigene involved in ‘monoterpenoid biosynthesis (PATHWAY: ko00902)’, one 
unigene involved in ‘diterpenoid biosynthesis (PATHWAY: ko00904)’ (Figure S8). In addition, 2197 
unigenes were annotated to ‘lipid metabolism’, including 199 unigenes involved in ‘unsaturated fatty 
acids biosynthesis (PATHWAY: ko01040)’, 218 unigenes in ‘fatty acid biosynthesis (PATHWAY: 
ko00061)’, 130 unigenes in ‘fatty acid elongation (PATHWAY: ko00062)’, and 311 unigenes in ‘fatty 
acid degradation (PATHWAY: ko00071)’. The unigenes were also classified into Clusters of 
Orthologous Groups (COG) (Figure S9). A total of 36,724 (19.96%) unigenes were subdivided into 26 
COG classifications. Among them, the cluster of ‘general function prediction’ (5364, 14.61%) 
represented the largest group, followed by ‘posttranslational modification, protein turnover, 
chaperones’ (4399, 11.98%), ‘translation, ribosomal structure, and biogenesis’ (3961, 10.79%), and 
other categories (less than 3000). 

3.3. Genes Expressed Differentially between Insects at Different Stages 

There were 2774 genes expressed differentially between A1 and A2, with 990 genes up-regulated 
and 1284 down-regulated. There were 2331 genes expressed differentially between A2 and L, with 
706 genes up-regulated and 1625 down-regulated. There were 1330 genes expressed differentially 
between A1 vs. L, with 937 genes up-regulated and 393 down-regulated (Figure 2A). Combinational 
analyses revealed that 202 genes were commonly up-regulated and 1187 genes commonly down-
regulated in the two lac secretion-active adult stages in comparison with the lac secretion-minimum 
larval stage (Figure 2B). The remaining genes were differentially regulated among the three stages. 
Since the commonly up- and down-regulated genes are most likely involved in lac synthesis and 
secretion, the composition of these genes were analyzed in detail in the following sections. 
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Figure 2. Genes expressed differentially at different developmental stages and candidate genes 
putatively involved in lac synthesis. (A) The numbers of differentially expressed genes (DEGs) 
between lac secretion-minimum and lac secretion-active stages. L is the lac secretion-minimum stage 
whereas A1 and A2 are lac secretion-active stages. (B) Venn diagram showing the number of 
commonly up- and down-regulated genes among the three different stages of the insect. (C) 
Composition of commonly up-regulated. (D) Composition of commonly down-regulated. (E) The 
heatmap of expression profiles of 28 DEGs in different developmental stages of lac insect. 

3.4. Reduced Protein Synthesis in Lac Secretion-Active Stages 

As shown in Figure 2C,D, the largest proportions of genes that were both commonly up- and 
down-regulated are un-annotated. These unique genes represent opportunities to identify novel 
genes with new functions. The roles of these un-annotated genes in lac synthesis and secretion remain 
to be studied. 

The second largest category of genes that were commonly down-regulated was ‘protein 
metabolism’, which included proteins involved in protein synthesis, folding, modification, and 
degradation (Table 2, Table S3). There were 21% of commonly down-regulated genes belong to the 
‘protein metabolism’ category. On the other hand, there were only 8% of commonly up-regulated 
genes belong to this category. Most of the commonly down-regulated genes encode various 
ribosomal proteins, followed by chaperones, and proteases or protein degradation-related, indicating 
that protein synthesis was at much lower levels in lac secretion-active stages of the insect. In 
comparison, most of the commonly up-regulated ‘protein metabolism’ genes encode proteins 
involved in folding and degradation (Table S4). The combination of down-regulation of genes in 
protein synthesis and up-regulation in protein degradation indicated an overall reduction in protein 
synthesis in lac secretion-active stages. This could be a way for the insect to save energy and nutrients 
for the production and secretion of lac. 
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Table 2. Commonly up-regulated and down-regulated genes in the two lac secretion-active adult 
stages in comparison with the lac secretion-minimum larval stage. 

Metabolic Pathway 
Up Down 

Number Average log2 fold Number Average log2 fold 
Protein metabolism: Synthesis, modification, and degradation 

Ribosomal proteins 1 1.19 113 −5.66 
Initiation and elongation factors 1 7.77 27 −5.52 
Chaperones and protein folding 6 2.41 34 −5.90 

Proteases and protein degradation related 9 1.66 75 −5.47 
Others 0 - 1 −5.52 
Total 17 3.26 250 −5.61 

Central metabolic pathways and energy metabolism 
Glycolysis 2 1.03 7 −5.92 

Citrate acid cycle (TCA cycle) 4 1.38 14 −5.12 
Pentose phosphate pathways 3 1.55 3 −6.13 

Respiratory chain and energy metabolism related 2 1.02 37 −5.81 
Others 0 - 9 −4.99 
Total 22 1.25 70 −5.59 

Non-central metabolic pathways 
Metabolism of fatty acids, lipids, terpenes 24 1.96 23 −4.68 

Metabolism of nitrogen compounds 9 2.01 22 −5.31 
UDP-glucuronosyl and UDP-glucosyl transferase 4 1.72 0  

Other metabolism 6 2.03 32 −4.92 
Total 43 1.93 77 −4.97 

3.5. Reduced and Unbalanced Central Metabolic Pathways 

Overall, metabolism via central metabolic pathways was reduced in insects at lac secretion-
active stages based on the proportion of genes that are commonly up- or down-regulated (Table 2, 
Figure S10). There were 70 down-regulated genes involved in central metabolic pathways and 
respiratory chain with average of 5.59 log2 fold down-regulation. In comparison, there were only 22 
genes up-regulated with only 1.25 log2 fold increase. However, not every step in the three central 
metabolic pathways was affected evenly. All (37) identified genes encoding components in the 
respiratory chains were down-regulated with similar fold changes, indicating that overall ATP 
production for energy use was lowered. However, there were genes for some enzymatic steps, which 
were actually up-regulated (Table 2, Figure S10). This uneven regulation of central metabolic 
pathways suggested that these pathways were regulated for accumulation of certain intermediates 
for biosynthesis. Presumable accumulated intermediates include glucose-6-phosphate, ribulose-5-
phophate, glyceraldehide-3-phosphate, sedoheptulose-7-phosphate, glucose-6-phosphate, fructose-
1,6-bisphosphate, citrate, succinyl-CoA, and malate. These are activated sugars and other 
intermediates that could be used for lac synthesis directly or indirectly. 

3.6. Shifted Metabolism of Fatty Acids, Lipids, and Terpenes 

In contrast to the overall reduction in protein metabolism and unevenly affected central 
metabolic pathways, the metabolic pathways of fatty acids, lipids, and terpenes were shifted in the 
lac secretion-active stages in comparison with the lac secretion-minimum stage (Table 2). There were 
24 genes commonly up-regulated and about an equal number (23) of genes down-regulated, even 
though the magnitude of down-regulation was much bigger than that of up-regulation. The up- and 
down-regulation of genes within the same functional categories indicated a shift in formation of 
different products of the same categories at different stages. We hypothesize that the genes up-
regulated in the lac secretion-active stages are involved in lac production and secretion. 
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3.7. Candidate Genes Potentially Involved in Lac Synthesis and Secretion 

Based on the correlation between gene expression levels and lac accumulation rates as well as 
the putative functions of genes, candidate genes potentially involved in lac synthesis and secretion 
were identified, including genes involved in fatty acid synthesis: FS-1 (acetyl-CoA carboxylase, fatty 
acid synthesis), FS-8 (acyl-CoA reductase, fatty alcohol synthesis), FS-1 (acyl-CoA synthetase, fatty 
acid biosynthesis), FS-2 (acyl-CoA synthetase), FS-7 (acyl-CoA synthetase), FS-5 (fatty acid synthase), 
FS-11 (fatty acid synthase), FS-12 (fatty acid synthase), FS-6 (fatty acid synthase), FS-10 (ATP-citrate 
lyase, fatty acid biosynthesis), FS-3 (fatty acid desaturase, fatty acid desaturation), FS-4 (fatty acid 
desaturase), FS-14 (fatty acid desaturase), FS-13 (fatty acid desaturase), FS-18 (fatty acyl-CoA 
elongase), FS-17 (medium-chain acyl-CoA dehydrogenase, fatty acid oxidation), FS-9 (17-beta 
hydroxysteroid dehydrogenase), FS-16 (trans-2,3-enoyl-CoA reductase), and FS-15 (enoyl-CoA 
hydratase); genes involved in terpenoid biosynthesis: TBS-4 (hydroxymethylglutaryl-CoA synthase), 
TBS-2 (polyprenyl synthetase), TBS-1 (polyprenyl synthetase), and TBS-3 (decaprenyl-diphosphate 
synthase); and genes involved in UDP-driving glycosylation: UDP-1 (oligosaccharyltransferase, N-
linked glycosylation pathway), UDP-2 (UDP-glucuronosyl/-glucosyl transferase, catalyzes the 
addition of the glycosyl group from a UTP-sugar to a small hydrophobic molecule), UDP-3 (UDP-
glucuronosyl/-glucosyl transferase), UDP-4 (UDP-glucuronosyl/-glucosyl transferase), and UDP-5 
(UDP-glucuronosyl/-glucosyl transferase). As shown in Figure 2E, Page: 9 
Table S5, the expression of these genes was well correlated with the secretion of lac. The genes 
putatively involved in fatty acid synthesis may produce hydroxyl fatty acids contained in lac. The 
genes putatively involved in terpenoid synthesis may participate in production of sesquiterpene 
acids, which are major components of lac [1]. The involvement of UDP-dependent glycosylation in 
lac synthesis remains very speculative. The reason we think it might be involved directly or indirectly 
is the apparent accumulation of activated sugars based on unbalanced central metabolic pathways. 
The same types of genes are specifically up-regulated as well in wax secretion insects [15]. Among 
these differentially expressed genes, 14, namely FS-1, FS-3, FS-4, FS-6, FS-9, FS-11, FS-13, FS-14, FS-
15, FS-16, FS-17, FS-19, TBS-3, and TBS-4, were confirmed by qPCR (Figure 3). 

 
Figure 3. qPCR analyses of 14 DEGs in the two shellac secretion-active adult stages in comparison 
with the shellac secretion-minimum late larval stage. (A) The genes related to fatty acid synthesis. (B) 
The putative genes involved in terpenoid biosynthesis. Horizontal axis indicates sample collection 
stage. Small letters mean that the analysis of the significantly of DEGs at L, A1, and A2 stages (p < 
0.05). 
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4. Discussion 

A total of 205,581 transcripts were obtained in this study, among which 183,899 unigenes were 
successfully annotated by seven databases including Nt, Nr, Swiss-Prot, COG, GO, KOG, and KEGG. 
The most sequences were annotated in A. pisum by homologous sequence alignment in the Nr 
database; they may have a relatively close genetic relationship and the A. pisum has abundant 
genomic information [25]. There are 50,406, 36,724, and 30,464 unigenes annotated to GO, COG, and 
KEGG databases, respectively, which provide rich data resources for deeper studies on the 
mechanism of lac secretion of lac insects in the future. 

The secretion rate of lac was different between different individuals. The secretion rate of Kerria 
lacca gradually decreased in the adult stage; the highest increase of secretion rate of each female was 
2.54 × 10−4 mg/d in the early adult, which gradually decreased at middle and late stages [26]. At larval 
and late adult stages of Kerria yunnanensis, the individual secretion rate was relatively slow. In the 
middle adult stage, the maximum secretion rate was 1.46 × 10−1 mg/d, which gradually decreased at 
late stages [27]. Through the study on the secretion rate of K. chinensis, it was found that the mid–late 
stage had a maximum secretion rate of 4.82 × 10−1 mg/d, and the secretion rate gradually decreased 
at later stages. Therefore, the study proved that the expression of genes associated with secretion of 
lac in the adult stage was significantly different (especially higher than other stages), which will 
provide a foundation for screening the follow-up genes associated with lac biosynthesis. 

Based on our results, we propose a hypothesis for lac synthesis in K. chinensis (Figure S11). The 
model consists of three major physiological changes that provide the basis for lac synthesis, including 
savings of nutrients and energy, production of intermediates and NADPH necessary for lac 
biosynthesis, and a shift in metabolism of fatty acids, lipids, and terpenes that results in reduction of 
fatty acids, lipids, and terpenes for other physiological uses but increase of these compounds for lac 
synthesis. To save nutrients and energy, the overall metabolism is lowered in lac secretion-active 
stages, particularly in protein synthesis and structural components. The central metabolic pathways, 
including pentose phosphate pathway, glycolysis, and TCA cycle, were unequally affected, leading 
to accumulation of activated simple sugars and other intermediates for lac synthesis. The shift in 
metabolism of fatty acids, lipids, and terpenes results in reduced production of these compounds in 
other part of tissues that are used for normal growth and development, but elevated production in 
the lac secretion glands for the production of lac. Our model hypothesis provides directions for 
further experimental tests in the future regarding lac synthesis in the insect K. chinensis. 

5. Conclusions 

In this paper, the amount of individual secretion and rate of Kerria chinensis as the object of study 
of lac secretion in different periods were measured to reveal the lac secretion characteristics and 
dynamics. By analyzing the transcriptomes of different stages of K. chinensis, we speculated the 
correlation of gene functions through the link of gene expression level and lac secretion rate; the 
results showed that 28 candidate genes that may be involved in lac synthesis were preliminarily 
screened; meanwhile, the results provided a scientific basis for the verification of molecular 
mechanisms related to lac secretion. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1: The 
pathways of terpenoid and fatty acid biosynthesis. (A) The procession of terpenoid biosynthesis. ATOT 
(acetoacetyl-CoA thiolase); HMGS (hydroxymethylglutaryl-CoA synthase); HMGR (hydrox-methylglutaryl-
CoA reductase); MK (mevalonate kinase); PMK (phosphomevalonate kinase); MPD (diphos 
phomevalonatedecarboxylase); IDI (isopentenyl diphosphate isomerase); FPPS (farnesyl diphosphate synthase); 
TPS (terpene synthase). (B) The procession of Fatty acid biosynthesis, ACC (acetyl-coenzyme A carboxylase); 
FAS (fatty acid synthase); ELO (elongase of very long chain fatty acid); FAD (fatty acid desaturase), Figure S2: 
Lac secretion of females at different stages, Figure S3: The strategy to identify shellac-secretion related genes, 
Figure S4: Length distribution of unigenes of K. chinensis, Figure S5: Data of Nr classification. (A) The E-value 
distribution of the result of Nr annotation. (B) The similarity distribution of the result of Nr annotation. (C) The 
species distribution of the result of Nr annotation, Figure S6: GO classification analysis of unigenes in unigene. 
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GO functions is showed in Y-axis. The X-axis shows the number of genes that have the GO function, Figure S7: 
KEGG classification analysis of unigenes in all-unigene. KEGG functions is showed in Y-axis. The X-axis shows 
the percentage of genes that have the KEGG function, Figure S8: Metabolism of terpenoids, polyketides, and 
lipid metabolism pathway. (A) Metabolism of terpenoids and polyketides pathway. (B) Lipid metabolism 
pathway. Metabolism pathway is shown in Y-axis. The X-axis shows the number of genes, Figure S9: COG 
function classification of unigenes. The horizontal coordinates are function classes of COG and the vertical 
coordinates are numbers of unigenes in one class. The notation on the right is the full name of the functions in 
X-axis, Figure S10: Central metabolic pathways. (A) Pentose phosphate pathways. (B) Glycolysis. (C) Citruate 
acid cycle. Blue numbers: the number of genes related to the pathways of pentose phosphate pathways, 
Glycolysis and citruate acid cycle enzymes in transcriptome data, Figure S11: The lac synthesis in K. chinensis; 
Table S1: The quantitative PCR primers of 14 candidate genes in K. chinensis, Table S2: Assembly quality of K. 
chinensis transcriptome, Table S3: The commonly down-regulated genes metabolic pathways, Table S4: The 
commonly up-regulated genes metabolic pathways, Table S5: FPKM of 28 putative genes related to fatty acid 
synthesis, terpenoid biosynthesis, and UDP-driving glycosylation.  
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