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Abstract: Crapemyrtle bark scale, Acanthococcus (=Eriococcus) lagerstroemiae (Kuwana) (Hemiptera:
Eriococcidae), is a newly introduced insect pest on crapemyrtles, Lagerstroemia spp. (Myrtales:
Lythraceae), one of the most popular flowering shrubs in the U.S. Since first detected in Texas in
2004, this pest has spread to twelve states causing losses to stakeholders. To develop a management
plan, we reviewed current knowledge about the pest’s biology and ecology, and suggested research
approaches including studying its thermal tolerance, host range, plant resistance and biological
control. Parasitoids and predators have been reared from A. lagerstroemiae in the U.S. and China.
However, new surveys of natural enemies should be conducted in China, and studies on the host
range and impacts of natural enemies on A. lagerstroemiae may help determine the potential for
classical biological control. The life history, preying efficiency and rearing methods are important for
coccinellid predators found in the U.S. including Chilocorus cacti L. and Hyperaspis spp. To enhance
natural enemy performance, it is important to evaluate a sustainable insecticide program that
considers efficacy, timing, rate and impact on pollinator health. Finally, an integrated management
program of A. lagerstroemiae is discussed including planting resistant cultivars, using host specific
natural enemies, and prudent use of insecticides.

Keywords: Acanthococcus lagerstroemiae (Kuwana); exotic species; integrated pest management; host
resistance; biological control; parasitoids; Chilocorus cacti L.; Hyperaspis spp.

1. Introduction

Crapemyrtles, Lagerstroemia spp. L. (Myrtales: Lythraceae), are popular flowering shrubs and
small trees around the world. Native to Southeast Asia and Australia, including China, Japan,
India, Australia and Oceania [1], crapemyrtles have been introduced into the U.S. as ornamentals
for 180 years [2]. Crapemyrtles have become a dominant landscape tree in the southern U.S. with an
annual wholesale value of approximately $66 million in 2014 [3]. Breeding programs over the last
35 years have produced superior varieties in a wide range of plant sizes and growing habits with
improved flowering, new flower and foliage colors, ornamental bark, increased vigor and adaptability
to a wide range of soil types [2,4]. In the U.S., crapemyrtle is hardy from USDA Plant Hardiness Zone
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6 to 10 (temperature ranging from −23.3 ◦C to −1.1 ◦C), while its roots are believed to be winter hardy
in Zone 5 (temperature ranging from −28.9 ◦C to −23.3 ◦C) [2].

Crapemyrtles are valued for their relatively easy maintenance and limited pest problems [2,4].
The main diseases of crapemyrtle are powdery mildew caused by the fungus Erysiphe australiana
(=lagerstroemiae) (McAlpine) U. Braun & S. Takamatsu (Erysiphales: Erysiphaceae), and Cercospora
leaf spot caused by Pseudocercospora lythracearum (Heald & Wolf) Liu & Guo (Capnodiales:
Mycosphaerellaceae) [2]. Until the discovery of Acanthococcus lagerstroemiae (Kuwana) (Hemiptera:
Eriococcidae), commonly referred to as the crapemyrtle bark scale, the primary insect pests of
crapemyrtle were the crapemyrtle aphid, Sarucallis (=Tinocallis) kahawaluokalani (Kirkaldy) (Hemiptera:
Aphididae) and the Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), followed
by flea beetles, Altica spp. Geoffroy (Coleoptera: Chrysomelidae), and the granulate ambrosia beetle,
Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae) [2]. However, these pests on
crapemyrtles can largely be managed with resistant cultivars, landscape planning including plant
placement in sunny locations with good ventilation; monitoring programs with optimal traps and
rapid response including trunk sprays or the removal of infested plants; and environmentally friendly
insecticides including insecticidal soaps or horticultural oils [2,4,5].

The crapemyrtle bark scale, A. lagerstroemiae, is a newly introduced insect pest of crapemyrtles
in the U.S. Native to Asia, A. lagerstroemiae was first reported in 2004 in a nursery in Richardson, TX,
(Dallas County) [6]. The wide distribution of crapemyrtles in the U.S. may facilitate the rapid spread of
A. lagerstroemiae. Associated with accumulation of black sooty mold (Figure 1), A. lagerstroemiae infestations
could cause aesthetic damage to crapemyrtle [4,7]. Because of this plant damage, A. lagerstroemiae was
recognized as one of the top nine pests in 2015 by the Greenhouse Grower magazine [8].
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Information on the biology, ecology and control of A. lagerstroemiae is limited, and most comes
from field observations in different regions in Asia. For example, the number of generations of
A. lagerstroemiae ranged from two to four per year depending on the location [9–12]. Management
strategies have focused on chemical control including the use of cypermethrin emulsion and lime
sulfur, which reported to be effective in suppressing nymphs in China [9,13]. However, information on
overwintering ecology, host plant resistance, and biological control remains unknown. The objectives
of this review are to present current knowledge about the biology and ecology of A. lagerstroemiae,
and to suggest research approaches for implementing integrated pest management (IPM) programs
focusing on pest’s thermal tolerance, host range, and the evaluation for host plant resistance and
biological control.

2. Taxonomy

Acanthococcus lagerstroemiae (Kuwana), formerly Eriococcus lagerstroemiae Kuwana (Hemiptera:
Eriococcidae), was combined into the genus Acanthococcus (Acanthococcidae) in 2013 along with
345 other species [14]. The family Eriococcidae sensu lato contained about 80 species in 10 genera
in the U.S. [15], with some important ornamental plant scale pests. Kozar et al. (2013) placed most
of these scales into Acanthococcidae (Group Family), for example, Acanthococcus (=Eriococcus) azalea
(Comstock) on azaleas and Gossyparia spuria (Modeer) on elms [14,16]. The definition and borderlines
of the family Eriococcidae (or Acanthococcidae) is still debated among coccidologists due to its diverse
morphology and behavior [14,15]. Molecular analyses using the nuclear small subunit ribosomal RNA
gene (SSU rRNA or 18S) also suggested the polyphyletic relationships within genus Eriococcus sensu
lato [17]. Here we refer to the crapemyrtle bark scale as A. lagerstroemiae based on a latest review of the
genus [14,18].

3. Biology

Acanthococcus lagerstroemiae has the same incomplete metamorphosis as other species in the
superfamily Coccoidea [19]. The female is paedomorphic, meaning that its form resembles that of
a nymph [4,7]. The male turns into an alate without mouthparts after the prepupal and the pupal
stage [7]. Eggs are 0.35 ± 0.05 mm (mean ± standard error) long, 0.15 ± 0.05 mm wide (n = 20), pink,
and surrounded with white filaments (Figure 2a). Eggs are laid inside the white felt-like covering
secreted by the female.

Nymphs are pink and mobile (Figure 2b). The first instars or crawlers are 0.5 ± 0.1 mm long and
0.15 ± 0.05 mm wide (n = 20). After hatching, crawlers settle on the woody parts of the stem and new
growth. Three nymphal stages were observed [7]. Nymphs and females secrete honeydew as a result
of feeding.

Male pre-pupae and pupae are pink, non-feeding, immobile, and completely enclosed by white
sacs (Figure 2c). Male pre-pupae are 0.9 ± 0.1 mm long, 0.4 ± 0.1 mm wide (n = 20), and male pupae
are 1.2 ± 0.1 mm long and 0.5 ± 0.1 mm wide (n = 20) (Figure 2c-1). The blackish eyes and wing pads
in the pupal stage are distinct from the pre-pupae (Figure 2c-2). Males are pink, alate, and have two
long white filaments at the tip of the abdomen (Figure 2e). The mesothoracic wings have reduced
venation, and the metathoracic wings have been lost along with the mouthparts. There are two pairs
of ocelli each on dorsal and ventral side of the head, and a pair of smaller lateral ocelli. The filaments
and extra ocelli have also been observed on other scales in Coccoidea which might function to stabilize
the flight [20].

Females are 2.0 ± 0.9 mm long, 1.2 ± 0.6 mm wide (n = 20), wingless, pink, and sessile (Figure 2d).
Female shape and size varies according to the location of settling and presence of eggs inside the
abdomen, but in general the size is much larger than the male. After production of the white ovisac,
all eggs are laid, the female decreases in size and dies. The female white ovisac likely functions as a
barrier against natural enemies and a mechanism to maintain humidity (Figure 2f).
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Acanthococcus lagerstroemiae has high fecundity and populations can grow rapidly. Females lay
from 114 to 320 eggs during their lifetime [10]. After hatching and each molting, the crawlers and later
instars disperse along the branches for one to two days and then become sessile [7]. Scales colonize the
leaves, branches, twigs, trunk, stems and fruits. Some empirical evidence suggests that females and
males have three and five nymphal stages, respectively [7]. Number of generations per year ranges
from two to four depending on the climate in Asia [9–12] and is thought to be two to four in the
U.S. [4]. In Anhui, China (31◦81′ N, 117◦21′ E), two generations each year were observed [9], and the
life cycle from egg to adult varied from 56 to 83 days [10]. In Guiyang, China (26◦41′ N, 106◦68′ E) and
Sichuan, China (27◦95′ N, 102◦21′ E), four generations were recorded [11,12]. In Asia, A. lagerstroemiae
overwinters as egg, nymph, prepupa and pupa [9,11,21], while in the U.S., it has been reported to
overwinter as nymphs [4].

4. Host Range

Host records revealed that A. lagerstroemiae not only attacks crapemyrtle but also other plant
species in different families. In China, Japan, and Korea, this pest has been reported on thirteen other
plants of ecological and economic importance (Table 1). For example, A. lagerstroemiae was reported to
be a problem to pomegranate, Punica granatum L. (Myrtales: Lythraceae) in Pan Xi District, Sichuan,
China (27◦02′ N, 101◦44′ E), due to sooty mold accumulation [12]. Despite being present in the U.S. for
more than ten years, A. lagerstroemiae has only been reported feeding on crapemyrtle [4] and American
beautyberry (Callicarpa americana L.) [22]. Understanding the impact of A. lagerstroemiae to other plant
species in the U.S. could help predict the potential economic damage and prevent its spread to other
plant species.
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Table 1. Host plants of Acanthococcus lagerstroemiae in Asia and Hungary (except for Lagerstroemia spp.).

Scientific Name Common Name Order Family Country Reference

Anogeissus latifolia (Roxb. ex DC.) Wall. ex Guill. & Perr. Axlewood Myrtales Combretaceae Korea [23]
Anogeissus sp. − Myrtales Combretaceae China [24]

Buxus microphylla Sieb. et Zucc. Korean Boxwood Buxales Buxaceae Korea [25]
Celtis sinensis Pers. Chinese hackberry Rosales Cannabaceae Korea [25]

Dalbergia eremicola Polhill Indian rosewood Fabales Fabaceae Korea [23]
Diospyros kaki Thunb. Japanese persimmon Ericales Ebenaceae Korea [25,26]

Ficus carica L. Edible fig Rosales Moraceae Korea [25]
Glochidion puberum (L.) Hutch Needlebush Malpighiales Euphorbiaceae China [27]

Glycine max (L.) Merr. Soybean Fabales Fabaceae China [27]
Ligustrum obtusifolium Sieb. et. Zucc. Border privet Lamiales Oleaceae − [14]

Malus pumila Mill. Paradise apple Rosales Rosaceae China [27]
Mallotus japonicus Muell. Arg. Food wrapper plant Malpighiales Euphorbiaceae Korea [25,28]

Myrtus sp. Myrtle Myrtales Myrtus Hungary [14]
Punica granatum L. Pomegranate Myrtales Lythraceae China and Korea [25,27,28]

Pseudocydonia sinensis Schneid. Chinese-quince Rosales Rosaceae Korea [26]
Rubus sp. Brambles Rosales Rosaceae Hungary [14]
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5. Distribution and Dispersal

Acanthococcus lagerstroemiae is widely distributed in Asia. The most northern and southern
locations reported in Asia are Beijing, China (40◦12′ N, 116◦21′ E) [29] and Tamil Nadu, India (10◦77′ N,
78◦71′ E) [30], respectively. It was reported in England [23] in 1915 in a nursery but has not been
reported since then [31]. Since its first detection in 2004 [4], A. lagerstroemiae has been reported in
the U.S. states of Alabama, Arkansas, Georgia, Louisiana, Mississippi, New Mexico, North Carolina,
Oklahoma, Tennessee, Texas, Virginia [32], and Washington [33], as of August, 2016. To predict
the potential geographic distribution of the scale, we performed a niche modeling exercise using
worldwide locations (MaxEnt version 3.3.2; http://www.cs.princeton.edu/~schapire/maxent/) [34].
Eighty-two confirmed locations were used in the model, including 57 locations in the U.S., 22 locations
in China, and one location each in Japan, Korea, and India, respectively (Table S1). We used
altitude and 19 bioclimatic (bioclim) variables related to temperature and precipitation from the
WORLDCLIM database (http://www.worldclim.org) to predict the climatic suitability in the U.S. and
Asia. The prediction suggested that A. lagerstroemiae has established in different climates, and perhaps
has reached the upper geographical limit in the U.S. (Figure 3).
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Short distance dispersal of A. lagerstroemiae occurs by nymphs, and long-distance dispersal could
be attributed to wind, birds, and human activities [4]. Morphological characters of crawlers could
facilitate its dispersal by wind including flat and small body, relatively long legs, and lateral wax
filaments on the body fringe [20]. Under experimental conditions, birds were capable of transferring
nymphs of the hemlock woolly adelgid, Adelges tsugae (Annand) (Hemiptera: Adelgidae) by touching
infested branches [35]. Crawlers of four armored scales, including Aspidiotus nerii Bouche (Hemiptera:
Diaspididae), Abgrallaspis aguacatae Evans, Watson & Miller, Hemiberlesia lataniae (Signoret), and
Diaspidiotus perniciosus (Comstock), were found possessing a suction cup-like structure on hairs at the
end of each leg, which can help them latch on larger insects to disperse [36]. We suspect A. lagerstroemiae
could use larger animals to disperse. The discontinuous reports of A. lagerstroemiae in the U.S. (Figure 3.
Survey points) suggested that human activities, trade and transportation of infested crapemyrtles
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could have facilitated the pest’s long-distance movement. Measures should be taken to prevent
further dispersal, for example, sales-stop restriction in reported area [37]. Potential distribution range
estimated by climatic suitability and host range can help early detection and timely management.

6. Plant Damage and Economic Impact

Acanthococcus lagerstroemiae does cause significant damage to its host plant. Several instances
suggested heavy infestation of A. lagerstroemiae could cause branch dieback (Figure 2) and stunt
growth [10–12]. Limited empirical evidence has suggested a reduction in blossoms as a result of
infestation with A. lagerstroemiae [38]. The scale secretes honeydew, which facilitates the growth of
black sooty mold [4,10–12,39] and could interfere with plant photosynthesis; in addition, the coverage
of ovisacs in the truck and branches is aesthetically displeasing. Extensive honeydew deposits
and sooty mold can turn branches and trunks to an unappealing black color, significantly reducing
landscape aesthetic value of infested plants [4]. However, relationship between population density of
A. lagerstroemiae and different aspects of plant damage is still unclear. Research on this relationship
may provide decision-making guidance on management options.

The economic impact of A. lagerstroemiae has not been quantified. However, failure to manage
this exotic pest could lead to serious economic loss for wholesale and retail nurseries, landscape
professionals, and consumers. To manage A. lagerstroemiae, nurseries would have to increase labor and
insecticides which could result in greater costs [4]. This scale could also potentially decrease the production
and market value of crapemyrtle because of reduced sales. In states such as Arkansas, Louisiana,
Oklahoma, Tennessee, and Texas, the stop-sale restriction of crapemyrtle has been enacted in nurseries
with A. lagerstroemiae infestation [37]. Because some of the potential hosts of A. lagerstroemiae are fruit
crops of economic importance, for example, paradise apple, Japanese persimmon, pomegranate, fig,
and brambles (Table 1), research to confirm host status of A. lagerstroemiae on these crops in the U.S. is
critical for establishing preventive management measures.

7. Natural Enemies

Natural enemies of A. lagerstroemiae found in Asia and North America include predators
and parasitoids. In Asia, the scale is attacked by the parasitoids Grandiclavula spatulata Zhang
& Huang [40], Metaphycus eriococci (Timberlake), Metaphycus cylindricus Wang, Li & Zhang [41],
Comperiella sp., Clausenia sp. [10], Metaphycus maculatus Agarwal [42] and Adelencyrtus longiclavatus
Hayat, Alam and Agarwal [43] (Hymenoptera: Encyrtidae); and the predators Chilocorus kuwanae
(Silvestri), Chilocorus rubidus Hope, Rodolia limbata Motschinsky, Propylaea japonica (Thunberg),
Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), Chrysopa septempunctata Wesmael, and
Chrysopa sinica (Tjeder) (Neuroptera: Chrysopidae) [10], and Cybocephalus nipponicus Endrody-Younga
(Coleoptera: Coccinellidae) [44]. Chilocorus kuwanae was introduced to the U.S. from Korea in 1984
to help control euonymus scale, Unaspis euonymi (Comstock) (Hemiptera: Diaspididae), and was
established in temperate regions (USDA Zone 7 or colder) of the U.S. after multiple releases [45].

In Louisiana, four ladybeetles (Coleoptera: Coccinellidae) were found associated with the
infestation of A. lagerstroemiae, including two species of twice-stabbed lady beetle, Chilocorus cacti L.
(Figure 4A,B) and Chilocorus stigma (Say), Hyperaspis bigeminata (Randall) (Figure 4C), and multicolored
Asian ladybeetle, Harmonia axyridis (Pallas) [7]. In Texas, the ladybeetle, Hyperaspis lateralis Mulsant
(Coleoptera: Coccinellidae) were observed in association with A. lagerstroemiae [46]. Field and
laboratory observations in Louisiana further confirmed the predation of the cactus lady beetle, C. cacti
and H. bigeminata on A. lagerstroemiae [47] (Figure 4B,D). We collected field samples of A. lagerstroemiae
nymphs in several locations in Beijing, China, during the summer and also in Louisiana during the
fall of 2015. Three species of unidentified Hymenopteran parasitoids were reared from females in
Beijing (Figure 5A–D), and one species from nymphs in Louisiana (Figure 5E). As these parasitoids
have potential to be used in classical or augmentative biological control, their morphological and
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molecular identification need to be confirmed. In addition, a small predacious beetle C. nipponicus was
reared from the colony of A. lagerstroemiae in Beijing, China in summer 2015 (Figure 5F).Insects 2016, 7, 78  8 of 19 
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(B) Larva of Chilocorus cacti feeding on eggs of Acanthococcus lagerstroemiae; (C) Adult of Hyperaspis bigeminata;
and (D) Larva of Hyperaspis bigeminata feeding on eggs of Acanthococcus lagerstroemiae. Voucher
specimens of these two ladybeetles were deposited in Louisiana State Arthropod Museum at Louisiana
State University.

Chilocorus cacti is a predator of eggs and crawlers of A. lagerstroemiae in Louisiana and Texas
(Figure 4B) [47]. In the laboratory, fourth instar of C. cacti can feed on about 400 scale eggs over 24 h [47].
Chilocorus cacti has been used as a biological control agent for several scale pests. In 1966, this predator
was introduced into South Africa from Texas to control the California red scale, Aonidiella aurantii
(Maskell) (Hemiptera: Diaspididae) [48]. Despite high predation levels and widespread releases, C. cacti
established only in southwestern South Africa and failed to control A. aurantii, probably because of
the extensive parasitism of C. cacti [49]. From 1987 to 1992, hundreds of C. cacti were released with
other predators to control H. lataniae on kiwifruits, Actinidia deliciosa (A. Chev.) Liang et Ferguson
(Ericales: Actinidiaceae) in New Zealand [50]. However, it failed to establish probably due to habitat
destruction and pesticide use [51]. More research is needed to determine the potential of C. cacti as
biological control agent for A. lagerstroemiae.
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Figure 5. Parasitoids reared from Acanthococcus lagerstroemiae (A–C); caused damage in Beijing,
China (D); the parasitoid reared in Louisiana, U.S. (E); and the predator, Cybocephalus nipponicus
Endrody-Younga, reared from Acanthococcus lagerstroemiae in China (F). Voucher specimens of these
natural enemies were deposited in Louisiana State Arthropod Museum at Louisiana State University.

8. Current Management

Acanthococcus lagerstroemiae is currently managed using chemical and/or mechanical methods
in the U.S. The protective covering secreted by A. lagerstroemiae and its feeding behavior under
bark crevices make control by contact insecticides difficult [4]. In China, lime sulfur, imidacloprid,
cypermethrin, methidathion, dimethoate, abamectin, triazophos, and acetamiprid have been evaluated
for controlling nymphs over one generation [9,13,52,53]. However, there is no information on the
efficacy of these chemicals over more generations or subsequent years. Physical methods to reduce
A. lagerstroemiae populations include brushing infested trunks with mild dishwashing solution, and
removing scales and sooty mold with high water pressure washes [4,6,39,54]. Chemical control with
soil-applied systemic neonicotinoids, such as dinotefuran and imidacloprid, are most effective [4].
Adding insect growth regulator or ultrafine oils as tank-mix or rotation partners may help with
long-term control. Cost of chemical control is about $10 per 10-foot-tall tree using a rotation between
two neonicotinoid insecticides as estimated by Bruce Nelms, ground manager of Louisiana State
University Shreveport campus, who has been treating >100 infested crapemyrtles from 2013 to
2015 [55]. Negative impacts to pollinators and natural enemies may be a concern when applying
these insecticides.

9. Research Needed to Manage A. lagerstroemiae

Currently, the only options to manage A. lagerstroemiae are using insecticides and/or mechanical
methods. Resurgence of scale densities has been observed several times at the Hammond Research
Station, Hammond, LA, after treatments of systemic insecticides at recommended rates [56].
Furthermore, insecticides including imidacloprid or cypermethrin have negative non-target effects
on some invertebrates including pollinators and natural enemies [57]. An integrated strategy for
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managing A. lagerstroemiae should include preventative approaches and control methods with least
ecological impact. The latter part of this review provides approaches to improve the integrated
management of A. lagerstroemiae.

9.1. Potential Distribution and Host Range

There is a need to study A. lagerstroemiae thermal tolerance to understand the pest’s phenology and
its potential distribution in the U.S. Survival to temperature extremes is critical for the establishment
and colonization of insects [58,59]. Mortality caused by cold and heat helps determine habitat suitability
by a better understanding of the overwintering ability and heat-tolerance of exotic pests. For example,
effects of cold temperatures to Microtheca ochroloma Stål (Coleoptera: Chrysomelidae) were studied by
exposing different life stages of this chrysomelid to low temperatures for various time periods [60].
Upon the arrival of an exotic pest, thermal tolerance parameters can be useful for regulatory purposes
to predict the potential distribution of the new pest in the adventive range. For example, cold tolerance
of the invasive light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), first
discovered in California in 2006, has been used to predict its potential geographic range [61]. Effects of
low temperatures on mortality and oviposition of the root weevil, Diaprepes abbreviatus (L.) (Coleoptera:
Curculionidae) were assessed to predict its future spread and area for searching potential natural
enemies [62]. Similarly, knowledge of the thermal tolerance of A. lagerstroemiae could help predict
its potential distribution in the U.S., thus providing geographic background for further research on
its management.

Understanding plant species at risk of A. lagerstroemiae and estimating risks on host plants are
critical for determining the pest’s potential spread and economic impact. Multiple plant species in
different families have been reported as hosts of A. lagerstroemiae in its native range, but most hosts
present in the literature were solely derived from unconfirmed observations. Some reported hosts
are ecologically and/or economically important to the U.S., for example, pomegranate production
comprises more than 30,000 acres with a $115 million value in Kern County, California alone [63].
Considering the potential and known economic values of horticultural and agronomic crops reported
as alternative hosts in Asia, it is critical to evaluate all potential host plants at risk in the U.S. By using
a centrifugal phylogenetic method [64], we can assess the ability of A. lagerstroemiae to develop (from
crawlers to adult) and reproduce on plant species [65,66] closely related to crapemyrtle or those that
have been reported as alternative host plants [67]. Since adult females are sessile on the host plant,
no-choice experiments and life-table analysis can help compare the scale’s development, survival,
reproduction and preference on selected plant species, as it has been conducted with other scales
(Ex. Tectococcus ovatus Hempel (Hemiptera: Eriococcidae) [68]). With the host range information
and preventative approaches, we can reduce or avoid economic losses to non-crapemyrtle hosts of
A. lagerstroemiae in the U.S.

9.2. Plant Resistance

Host plant resistance is critical for developing IPM programs. Currently there is no published
literature on crapemyrtle cultivar resistance to A. lagerstroemiae. With over 200 registered crapemyrtle
cultivars and more than 100 cultivars commercially available in the U.S. [2], research should be
conducted to study antibiosis and antixenosis of these cultivars to A. lagerstroemiae, which are adverse
effects on the pest’s biology and behavior, respectively [69]. Tolerance can be measured for crapemyrtle
cultivars by documenting a significant decrease in flowering or growth compared to others.

Integration of plant resistance into an IPM program involves screening, breeding and implementation
of cultivars [69]. Resistant genotypes of crapemyrtle to survival, growth and reproduction of
A. lagerstroemiae can be screened under no-choice condition. Crapemyrtle cultivars demonstrating resistance
to A. lagerstroemiae can be utilized as parents in breeding. For example, daily fecundity of crapemyrtle
aphids on seven crapemyrtle cultivars were screened under no-choice condition, and L. indica was
found to have higher resistance than L. fauriei and L. indica X fauriei hybrids [70]. After screening
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12 crapemyrtle cultivars, L. indica X fauriei hybrids with less mineral nutrient content in the leaves were
less preferred by the flea beetle, Altica litigate Fall (Coleoptera: Chrysomelidae) [71]. At the Crapemyrtle
Trails of McKinney and surrounding parks in McKinney, TX, there are more than 100 cultivars of
crapemyrtles [72], providing sources for screening resistant cultivars. Scientists at the University of
Florida and Texas A&M AgriLife Research and Extension Center began screening of these crapemyrtle
cultivars in 2014. Current molecular technologies can help understand mechanisms underlying
resistant varieties and apply this resistance to help develop new cultivars. Genomic sequencing
and transcriptomic analysis can identify genes with specific resistant traits, and the virus-induced
gene silencing technologies can ultimately assign resistant functions of these genes to plants [73].
Crapemyrtle cultivars with resistance to A. lagerstroemiae can be utilized in landscapes and evaluated
for efficacy and other control strategies.

9.3. Biological Control

Biological control could have higher benefit/cost ratio compared with chemical and/or
mechanical control strategies in terms of reduced continuous expenditure of pesticides and labor, low
impacts to beneficial insects, and low risks of pest resistance [74–76]. Chemical or mechanical methods
to control A. lagerstroemiae could become cost prohibitive or labor-intensive for homeowners and
nursery growers. A survey of socio-economic impact of the biological control of the mango mealybug,
Rastrococcus invadens Williams (Hemiptera: Pseudococcidae), in Benin showed that after failed
trials using both mechanical and chemical controls, the release of two parasitoids have successfully
controlled the mealybug with a benefit/cost ratio of 145:1 [77]. Moreover, there is a long history of
successful implementation of biological control programs against scale insects. For example, three
parasitoids including Acerophagus papayae Noyes and Schauff, Pseudleptomastix mexicana Noyes and
Schauff, and Anagyrus loecki Noyes and Menezes (Hymenoptera: Encyrtidae) were introduced to
India in 2010 and successfully controlled the papaya mealybug Paracoccus marginatus Williams and
Granara (Hemiptera: Pseudococcidae), which led to an estimated net benefit between $524 million to
$1.34 billion over five years [78]. In 1995, several natural enemies, including Anagyrus kamali Moursi
(Hymenoptera: Encyrtidae) and Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) were
introduced and have since successfully reduced the population density of the pink hibiscus mealybug,
Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae) in many areas of the Caribbean [79].
The estimated net benefit of the introduction in only Trinidad was $41 million representing a
socio-economic benefit/cost ratio of 8:1 for the period 1996–2024 [79]. Therefore, researchers should
investigate the possibility of a biological control program for management of A. lagerstroemiae in the
U.S. using classical, augmentative, and conservation biological control.

9.3.1. Classical Biological Control

The goal of classical biological control is to introduce natural enemies from the native area to
reduce pest’s populations in the adventive range. A classical biological control program involves the
exploration, identification, importation, host range testing in quarantine, release and evaluation of
natural enemies against A. lagerstroemiae in the introduced range [75].

Regions between Beijing and Jiangsu in China are ideal for exploration of natural enemies of
A. lagerstroemiae. Based on previous climatic modeling of MaxEnt and USDA Plant Hardiness Zone
Map, the northern distribution of the scale could be limited by winter temperatures and the distribution
of crapemyrtle [80]. Regions with similar plant hardiness zones such as Jiangsu in China (Figure 6),
Texas, and Louisiana in the U.S. (Figure 3), have very high climatic suitability (>75%) for the survival of
A. lagerstroemiae (Figure 6). Natural enemies adapted to colder winters can be explored in the region of
Beijing. In 2015, a collaboration was established with Beijing Forestry University that would facilitate
long-term explorations for natural enemies in China.

Highly specialized parasitoids and predators should be prioritized in a classical biological control
program of A. lagerstroemiae considering its effectiveness in scale control. Parasitoids with a narrower
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host range pose less risk to the ecosystem than other natural enemies [81]. For example, the parasitoid
Anagyrus sp. nov. nr. sinope Noyes & Menezes demonstrated traits as potential biological control
agents; and its highly specific to the cassava mealybug, Phenacoccus madeirensis Green (Hemiptera:
Pseudococcidae), a pest attacking cassava, pineapple, citrus and potatoes [82]. Specialized predators
are also good candidates for classical biological control programs. The vedalia beetle, Rodolia cardinalis
(Mulsant) (Coleoptera: Coccinellidae) reduced the densities of the cottony cushion scale, Icerya purchasi
Maskell (Hemiptera: Monophlebidae) [83], though this beetle’s host range was determined to be
exclusively cottony cushion scales only after their introduction [84]. For natural enemies already reared
from Asia, more research on their biology, ecology and host range are needed. Before introduction,
the host range of potential biological control agents should be studied in a quarantine facility and tests
should include native and exotic scales in the U.S. [15,16], for example, A. azalea, E. quercus, G. spuria,
and Eriococcus coccineus (Cockerell) (Hemiptera: Eriococcidae).

The functional response of parasitoids to A. lagerstroemiae measured in quarantine can generate
practical information for future field releases and mass rearing. Post-release assessment with
before-and-after experimental design can evaluate the impacts of parasitoids to A. lagerstroemiae
in the field. Comparison before and after releasing three introduced encyrtids including A. papayae,
P. mexicana, and A. loecki in classical biological control of P. marginatus in Tamil Nadu in 2010 showed a
9.7% reduction in the mealybug population one month after their release and 96.6% reduction after
six months [85]. These assessments can also help estimate economic benefits and the costs of classical
biological control programs.
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9.3.2. Augmentative Biological Control

The goal of augmentative biological control is to increase the numbers of local natural enemies
of A. lagerstroemiae. Chilocorus cacti and Hyperaspis spp. are predators of A. lagerstroemiae present in
the southern U.S. [7,46] and have potential for augmentative biological control. However, these two
ladybeetles do not appear sufficient to suppress A. lagerstroemiae in the field, especially in October and
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November when temperature begins to decrease [86]. Augmentation of these two species could reduce
the overall population of A. lagerstroemiae over a season. For example, 30 larvae of C. montrouzieri
per plant were released in a pomelo orchard in August 2005, and 98%, 90% and 82% of populations
of the citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae), the striped mealybug,
Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae), and the spherical mealybug, Nipaecoccus viridis
(Newstead) (Hemiptera: Pseudococcidae) were reduced, respectively [87].

To determine the potential of these two lady beetles in augmentative biological control,
researchers need to understand their life history and voracity. Study of developmental time at
different temperatures will enable researchers to construct population growth models. For example,
temperature-dependent development of Chilocorus bipustulatus L. (Coleoptera: Coccinellidae) studied
under seven different temperatures suggested its optimal temperature for development between 33.6
and 34.7 ◦C and a thermal constant for total development of 474.7 degree-days [88]. Laboratory trials
showed that eggs of A. lagerstroemiae can support C. cacti and H. bigeminata to develop from eggs
to adults [47] and population growth models can help predict quantity and timing of release for
optimal control. Similar to understand impacts of parasitoids, predation by these two ladybeetles
can be assessed in the laboratory and field. Life history parameters and predation can be modeled to
determine the impact of natural enemies to pest population dynamics. For example, the field life-table
study of Coccus viridis (Green) (Hemiptera: Coccidae) in coffee plantations suggested nymphs to
be the critical stage for mortality, and several coccinellid predators were considered an important
factor contributing to scale mortality in the field [89]. Researchers need to conduct similar studies
to determine the key life stages and factors causing mortality to A. lagerstroemiae in the field and
determine timing for release of predators.

Rearing natural enemies can be challenging, but will be critical for conducting field augmentation
studies. Chilocorus cacti has been studied as a biological control agent for scales that can be reared on
live prey including A. nerii [49]. Dried wasp brood was tried as artificial diet for C. cacti but failed to
support its oviposition [90]. No information about mass rearing of H. bigeminata has been reported
in the literature. Culturing C. cacti and Hyperaspis spp. on A. lagerstroemiae may lead to problems
including the discontinuity of food supply and the extra cost of rearing facilities and labor [91]. Future
work could explore factitious prey or artificial diets based on vertebrate protein as alternatives for
a mass rearing system, demonstrated successfully for other predators. For example, H. axyridis can
be mass reared using eggs of the Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera:
Gelechiidae) as factitious prey [91], or the mixture of chicken egg yolk, chicken liver, sugar, casein
enzymatic hydrolysate, soy oil, and different salts as artificial diet [92].

9.3.3. Conservation Biological Control

The goal of conservation is to enhance the performance or increase the population density of
natural enemies present in the environment by improving the habitat or reducing the exposure to toxic
insecticides [93]. Chemical control has an important role in suppressing pest density. When applying
insecticides it is difficult to avoid residual effects on non-target organisms [94], however, measures
can be taken to minimize detrimental effects. Currently, little is known about the non-target impact of
recommended insecticides used against A. lagerstroemiae on C. cacti, Hyperaspis spp., and parasitoids
reared from China; and research about the rates, timing and delivery (i.e., drench vs. bark spray) of
insecticide applications is needed.

Natural enemy populations can have more difficulty rebounding after a broad-spectrum pesticide
application compared to pests, such as organophosphate and carbamate insecticides [95], and to
chemical residues [96]. Soil-applied systemic neonicotinoid insecticides, which are currently the
recommended strategy for A. lagerstroemiae management [7], are less likely to directly contact
non-target organisms, but may impact natural enemies through food sources such as pollen and/or
nectar of surrounding plants [95,97]. A single foliar spray of imidacloprid was demonstrated to
affect survival, egg production and egg hatching of C. septempunctata in a laboratory study [98].
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In addition, neonicotinoid residues translocated into crapemyrtle pollen could further damage
the natural enemy population by causing mortality and altering behavior, such as soil-applied
imidacloprid on a mealybug parasitoid, Anagyrus pseudococci (Girault) [99], the pink spotted lady
beetle, Coleomegilla maculata (DeGeer) (Coleoptera: Coccinellidae) [100] and the green lacewing,
Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) [101]. Decrease of natural enemies may
result in resurgence of A. lagerstroemiae after applying neonicotinoid insecticides.

Using lower insecticide dosages or timing insecticides to avoid application when natural enemies
are most abundant or most susceptible can help reduce negative impact on biological control agents
and reduce development of pesticide resistance [95,96,102]. The application of dormant oil when
nymphs lack wax coverage should be evaluated. Studies on the interactions between insecticides and
natural enemies on A. lagerstroemiae populations are needed. For example, low dosage of the selective
aphicide pymetrozine combined with two biological control agents, the seven-spotted lady beetle,
Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Diaeretiella rapae M’Intosh (Hymenoptera:
Aphidiidae), reduced the cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae) population
by 98% in the laboratory [103]. Negative impacts of insecticides on natural enemies can be minimized
by better timing applications when populations of natural enemies are absent, and/or in life stages
most resistant to the insecticides [96,102,104]. Application in winter and early spring might reduce
A. lagerstroemiae nymphs lacking coverings without substantially impacting beneficial insects and
foliar sprays can help to deliver the products considering the low sap pressure of plants during winter.
To maximize survival, natural enemies should be released when insecticide residues have declined [95].

10. Conclusions

A successful integrated pest management strategy of A. lagerstroemiae requires knowledge of the
scale’s biology and ecology, host range and damage to the host plant. Use of crapemyrtle varieties
with high resistance to A. lagerstroemiae in the landscape can help improve pest management. Natural
enemies may play an important role in the management of A. lagerstroemiae in the field and knowledge
of the biology and ecology of natural enemies is needed. Classical biological control shows promise and
can be started by searching for parasitoids of A. lagerstroemiae in regions between Beijing and Jiangsu
in China. The potential for an augmentative biological control program should also be studied by
investigating the efficiency of local arthropod predators in the U.S., including C. cacti and H. bigeminata,
to manage A. lagerstroemiae populations. In addition, conservation biological control programs that
include the use of narrow-range insecticides with minimal risks, reduced application rates and better
timing of applications can improve IPM programs against A. lagerstroemiae.
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