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Abstract

DNA barcoding is used to identify cryptic species, survey environmental samples, and esti-

mate phyletic and genetic diversity. Armored scale insects are phytophagous insects and

are the most species-rich taxa in the Coccoidea superfamily. This study developed a DNA

barcode library for armored scale insect species collected from southern China during

2021–2022. We sequenced a total of 239 specimens, recognized as 50 morphological spe-

cies, representing two subfamilies and 21 genera. Sequencing analysis revealed that the

average G + C content of the cytochrome oxidase subunit I (COI) gene sequence was very

low (~18.06%) and that the average interspecific divergence was 10.07% while intraspecific

divergence was 3.20%. The intraspecific divergence value was inflated by the high intraspe-

cific divergence in ten taxa, which may indicate novel species overlooked by current taxo-

nomic treatments. All the Automated Barcode Gap Discovery, Assemble Species by

Automatic Partitioning, Taxon DNA analysis and Bayesian Poisson Tree Process methods

yielded largely consistent results, indicating a robust and credible species delimitation.

Based on these results, an intergeneric distance threshold of� 5% was deemed appropri-

ate for the differentiation of armored scale insect species in China. This study establishes a

comprehensive barcode library for the identification of armored scale insects, future

research, and application.

Introduction

DNA barcoding is a method of species identification, using short standardized DNA frag-

ments, first proposed by Herbert et al. in 2003 [1, 2]. It has since been used in several fields of

biology, including taxonomy [3–5], ecology [6, 7], conservation biology [8], and evolution [9].

It can be used to elucidate cryptic species [10], survey environmental samples [11], and esti-

mate phyletic and genetic diversities [12, 13]. Additionally, DNA barcoding can be used for

species identification, when information on the morphology and taxonomy of the species is

limited [14], such as for cryptic species and immature or mutilated specimens.

Scale insects are sap-sucking plant parasites that play an important role in the ecosystem

[15]. Honeydew, the waste generated by scale insects feeding exclusively on the phloem sap of
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host plants, is an important food source for birds, mammals and especially other insects [15].

However, they are common pests of perennial plants in managed systems and may cause chlo-

rosis and leaf fall [16]. Moreover, some armored scale species can prey on more than 100 plant

families, including fruit and nut crops, cotton, cereal crops, and forest and ornamental plants

[17–20]. They belong to the superfamily Coccoidea and comprise more than 8000 described

species from approximately 50 families [15]. Armored scale insects have a global distribution

and are the most species-rich taxa in the Coccoidea, comprising more than 2600 species and

approximately 400 genera in the family Diaspididae [15]. More specifically, there are 1108 spe-

cies of scale insects in China, including 452 species of armored scale insects from 82 genera

[15]. The Diaspididae possibly comprises the most invasive insect species, as their small size

makes them cryptic and difficult to detect and identify [21]. At present, microscopic observa-

tions of adult female specimens are the most popular method for identifying armored scale

species [22]; however, morphological identification requires an expert, and it cannot distin-

guish between two closely related species [23]. Additionally, it is difficult to identify species

based on the morphological characteristics of specimens from different developmental stages,

such as crawlers, second and third instar nymphs, or eggs [24].

DNA barcoding has been used with many taxa in the Coccoidea for primer designing [25],

species identification [26–31], genetic diversity estimation [32], and quarantine inspection

[33]. However, a search in the Barcode of Life Data System (BOLD) database in July 2023

using the term “Diaspididae” produced 2412 published records, whereas the term “Diaspididae

China” produced only 8 records (~0.3%), suggesting a lack of data on the biodiversity of

armored scale insects in China.

Fragments of the cytochrome c oxidase subunit I (COI) [25, 34] and 28S [35, 36] genes are

primarily employed in the identification of armored scale insects. However, some studies sug-

gest that 28S rDNA lacks sufficient variation to delimitate some species [26, 37]. Therefore,

28S is considered a complementary marker to COI in scale insects [31]. This study aimed to

develop a comprehensive DNA barcode library for the armored scale insect species of China as

well as assess the accuracy of COI barcodes in armored scale insects.

Materials and methods

Specimen collection and identification

A total of 239 armored scale specimens, identified as 50 morphological species, representing

two subfamilies and 21 genera were collected from 60 host plant species in seven provinces of

southern China (Yunnan, Guangxi, Fujian, Zhejiang, Hainan, Sichuan, and Guizhou) during

2021–2022 (Fig 1). The specimens and their host plant tissues were stored at −20˚C for further

analysis. Detailed information on each specimen, including location, host plant, and GenBank

accession numbers in NCBI (https://www.ncbi.nlm.nih.gov/), is provided in S1 Table. A com-

bined molecular/morphological preparation protocol was performed on each specimen to

obtain genomic DNA from the specimens and permanent slides of its cuticle [38]. Morpholog-

ical identification was conducted independently by Jiufeng Wei and Minmin Niu, according

to the morphological studies of the Diaspididae of Williams and Watson [39], Tang [20, 40,

41], Chou [42–44]. Specimen vouchers were deposited in Insect Specimen Museum, College

of Plant Protection, Shanxi Agricultural University.

DNA extraction, PCR, and sequencing

Total genomic DNA of the specimens were extracted using the Ezup column-based animal

genomic DNA extraction kit (Shanghai Bioengineering Co., Ltd, Shanghai, China). Thereafter,

the DNA samples were used as templates for a PCR amplifying an approximately 650 base pair
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(bp) fragment of the COI barcode region using the universal primers PcoF1 (5’-CCTTCAAC
TAATCATAAAAATATYAG-3’) [25] and LepR1 (5’-TAAACTTCTGGATGTCCAAAAAAT
CA-3’) [26]. The 30 μL reaction contained 9.5 μL ddH2O, 13.5 μL 2x Taq Master mix (1 mL),

1.5 μL of each primer (10 μM), and 4 μL of template DNA. PCR reaction conditions were as

follows: initial denaturation at 95˚C for 3 min; followed by 5 cycles of 95˚C for 1 min, 48˚C for

2 min, and 72˚C for 1 min and 35 cycles of 95˚C for 1 min, 51˚C for 2 min, and 72˚C for 1

min; and a final extension at 72˚C for 8 min. The PCR products were visualized using 1% aga-

rose gel electrophoresis and sequenced using the forward primer by Qingke Biotechnology

Co., Ltd (Shaanxi, China).

Sequence analysis

The sequencing results were viewed using Chromas v1.62 [45] and sorted using the TBtools

software [46]. Subsequently, all sequences were aligned and trimmed using MEGA v11.0 [47]

to obtain a matrix of 586-bp long sequences for further molecular analyses.

Genetic distance and phylogenetic analysis

The intraspecific and interspecific genetic distances were calculated using the Kimura 2

parameter (K2P) [48] and prior intraspecific divergence (P)-distance models and a neighbor-

joining (NJ) tree was constructed with the K2P model and 10000 bootstrap replicates in

MEGA v11.0. The maximum likelihood (ML) phylogenetic tree was constructed using Phylo-

Suite v1.2.3 [49] using the following settings: ML + standard bootstrap, 1000 bootstrap repli-

cates, and the TIM + F + I + G4 model obtained by the ModelFinder software [50] under the

BIC standard. A maximum parsimony (MP) tree was also constructed with 1000 bootstrap

replicates using MEGA v11.0 and the Bayesian inference (BI) phylogenetic tree was

Fig 1. Distribution map of specimens of armored scale insects collected from China during 2021–2022. The basemap was

created using the Natural Earth Dataset (http://www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0301499.g001
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constructed with PhyloSuite v1.2.3 using the following settings: 20000000 generations and the

GTR+F+I+G4 model obtained by ModelFinder software under BIC standard. Two sequences

of Paracoccus marginatus (Pseudococcidae, Hemiptera) were used as outgroups (GenBank

accession numbers: OR544511 and OR544512). The layout of the NJ tree was edited using the

Interactive Tree of Life v6 (https://itol.embl.de/) [51].

Species delimitation

Several methods have been proposed for species identification based on molecular data [52–

56]. This study used the Automated Barcode Gap Discovery (ABGD) (https://bioinfo.mnhn.fr/

abi/public/abgd/abgdweb.html) [52], Bayesian Poisson Tree Process (bPTP) [53], Assemble

Species by Automatic Partitioning (ASAP) (https://bioinfo.mnhn.fr/abi/public/asap/asapweb.

html) [55] and Taxon DNA analysis [56] methods to assess species boundaries and delimit

possible species. The ABGD method is a clustering approach based on genetic distances, and it

can be performed using different models (JC69, K2P, and P-distance). In the ABGD approach,

the relative gap width was set to 1.0 and the P-distance was set to 0.001–0.1. The bPTP method

is based on interspecific and intraspecific substitutions, and it assumes that the number of sub-

stitutions within a species is lower than the number of substitutions between species. The dis-

tinction between species is then achieved by calculating these two values [57]. The ML tree was

analyzed on the PTP website (https://species.h-its.org/ptp/) with the following settings:

Rooted, Remove outgroups, and default settings for the other parameters. The ASAP analysis

is a hierarchical clustering algorithm based on an evolutionary theory that avoids the computa-

tional burden of phylogenetic reconstruction by using only pairwise genetic distances [55]. In

the ASAP approach, the default settings were selected and data analyzed by three models,

Jukes-Cantor (JC69), Kimura (K80) ts/tv 2.0, and Simple Distance (p-distances). For the

Taxon DNA Analysis method, parameters were set to Best match, Best close match, All species

barcodes and Cluster methods to analyze the COI sequences.

Results

Genetic distance and phylogenetic analysis

Analysis of the sequencing data revealed 222 conserved sites, 364 variable sites, 334 parsimony

information sites, and 30 singleton sites accounting for 37.88%, 62.12%, 56.99%, and 5.12% of

the total COI gene sequence (586-bp), respectively. The average thymine (T), cytosine (C), ade-

nine (A), and guanine (G) contents of the COI gene sequences were 41.32%, 11.44%, 40.62%,

and 6.62%, respectively. The average A + T and G + C contents of the COI gene sequences

were 81.94% and 18.06%, respectively, indicating a strong A + T bias.

As expected, the mean genetic distances increased hierarchically with taxonomic categories

based on the K2P and P-distance models. As seen in Fig 2, the genetic distances calculated by

the K2P model were only slightly higher than those calculated by the P-distance model, with

intraspecific, interspecific, and intergeneric distances of 3.20% and 3.02%; 10.94% and 10.07%;

20.91% and 18.03%, respectively. Since the results of the two models were very similar, the

K2P distance model was used for further analysis. The intraspecific K2P distances ranged from

0 to 15.34%, and approximately 68.43% of the intraspecific distances were< 5%, while 99.88%

of the interspecific distances were > 5%. This suggests an obvious barcoding gap in the data

(Fig 3). Also, 10 species had K2P distances greater than 2% (S2 Table and Fig 4).

Based on the data in Table 1 and Fig 3, the intergeneric distance threshold of� 5% was

appropriate for the differentiation of Diaspididae in China, where intergeneric distances > 5%

suggest the presence of cryptic species.
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The NJ tree constructed from the 239 COI sequences can be seen in Fig 5. A total of 46 spe-

cies formed monophyletic branches with a high bootstrap support at the species level, which

was consistent with traditional taxonomic results. The ML tree constructed from the 239 COI
sequences can be seen in Fig 6. A total of 46 species formed monophyletic branches at the spe-

cies level with high bootstrap support, which was consistent with traditional taxonomic

results.

The MP tree constructed from the 239 COI sequences is shown in Fig 7. A total of 46 species

formed monophyletic branches at the species level with high bootstrap support, which was

consistent with traditional taxonomic results. The BI tree constructed from the 239 COI
sequences showed a total of 46 species on monophyletic branches at the species level with high

bootstrap support, which was consistent with traditional taxonomic results (Fig 8).

Species delimitation

The results of the ABGD analysis performed using the JC69, K2P, and P-distance models were

compared and data revealed that the number of groups based on the P-distance model ranged

from 66 to 75, and the initial partition engendered 66 groups (P = 0.0028–0.0359) (Table 2)

(S3 Table). The ABGD analysis categorized 13 sequences of Chrysomphalus dictyospermi into

two groups, 12 sequences of Lepidosaphes beckii into three groups, 19 sequences of Pseudaula-
caspis cockerelli into four groups, 11 sequences of Chrysomphalus bifasciculatus into four

groups, eight sequences of Hemiberlesia lataniae into three groups, five sequences of Pinnaspis
theae into five groups, five sequences of Aonidiella inornata into two groups, three sequences

of Parlatoria camelliae into two groups, and six sequences of Pseudaulacaspis celtis along with

Fig 2. Line chart of the mean genetic distances of the cytochrome oxidase subunit I (COI) gene sequences of armored scale insects from China at

different taxonomic levels based on the Kimura 2 parameter and prior intraspecific divergence (P) distance models.

https://doi.org/10.1371/journal.pone.0301499.g002
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seven sequences of P. cockerelli into one group. These results indicate a species classification

success rate (classification of the same species in the same group) of 65.69% for the ABGD

analysis.

Table 3 shows the results of the ASAP analysis under the three models. The lower the ASAP

score, the more reliable the partitioning results. The partitioning of the K2P model was closest

to the morphological results (S4 Table). The ASAP analysis categorized 13 sequences of C. dic-
tyospermi into two groups, 12 sequences of L. beckii into three groups, 19 sequences of P. cock-
erell into four groups, 11 sequences of C. bifasciculatus into four groups, 11 sequences of

Aulacaspis rosae into two groups, eight sequences of H. lataniae into three groups, seven

sequences of Parlatoria proteus into three groups, five sequences of P. theae into five groups,

and six sequences of P. celtis along with seven sequences of P. cockerelli into one group. These

results indicate a species classification success rate of 61.51% for the ASAP analysis.

In the Taxon DNA analysis, the threshold of 239 COI sequences was calculated to be 6.82%

by the Pairwise Summary method. With the Best match method, the number of accurately

identified sequences was 222, with a success rate of 92.88%; the number of ambiguous

sequences was 10, accounting for 4.18% of all the sequences; the number of incorrect identifi-

cations was seven, accounting for 2.92%. For the Best close match method, the number of

accurately identified sequences was 215, with a success rate of 89.95%; the number of ambigu-

ous sequences was eight, accounting for 3.34% of all sequences; the number of incorrect identi-

fications was three, accounting for 1.25%; the number of sequences without any match closer

than 6.82% was 13, accounting for 5.43%. With the All Species Barcodes method, the number

of accurately identified sequences was six, the success rate was 2.51%; the number of

Fig 3. Frequency histogram of intraspecific and interspecific genetic distances of armored scale species from China, based on the cytochrome c oxidase

subunit I (COI) sequences.

https://doi.org/10.1371/journal.pone.0301499.g003
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ambiguous sequences was 218, accounting for 91.21%; the number of incorrect identifications

was two, accounting for 0.83%, and the number of sequences with no match closer than 6.82%

was 13, accounting for 5.43%.

The Cluster method divided 239 sequences into 70 groups with a default threshold of 3%

(S5 Table). The Cluster analysis categorized 13 sequences of C. dictyospermi into two groups,

12 sequences of L. beckii into three groups, 19 sequences of P. cockerell into four groups, 11

sequences of C. bifasciculatus into four groups, 11 sequences of Aulacaspis rosae into two

groups, eight sequences of H. lataniae into three groups, seven sequences of Parlatoria proteus
into three groups, five sequences of P. theae into five groups, five sequences of A. inornata into

two groups, three sequences of P. camelliae into two groups, and six sequences of P. celtis
along with seven sequences of P. cockerelli into one group. These results indicate a species clas-

sification success rate of 58.16% for the Cluster analysis.

A total of 74 putative species were delimited using the bPTP analysis (S1 Fig). The bPTP

analysis categorized five sequences of P. theae into five groups, 12 sequences of L. beckii into

three groups, five sequences of A. inornata into two groups, eight sequences of H. lataniae into

three groups, three sequences of P. camelliae into three groups, 19 sequences of P. cockerell

Fig 4. Ten armored scale species from China with> 2% intraspecific Kimura 2 parameter distances based on the cytochrome

oxidase subunit I (COI) gene sequence.

https://doi.org/10.1371/journal.pone.0301499.g004

Table 1. Kimura 2 parameter genetic distances (%) based on the cytochrome oxidase subunit I gene (COI) of the armored scale insects from China at different taxo-

nomic levels.

Taxonomic level Cytochrome oxidase subunit I

Minimum (%) Mean (%) Maximum (%)

Intraspecific distance 0.00 3.20 15.34

Interspecific distance 5.39 10.94 19.90

Intergeneric distance 5.39 20.91 36.89

https://doi.org/10.1371/journal.pone.0301499.t001
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into five groups, 13 sequences of C. dictyospermi into two groups, 11 sequences of C. bifascicu-
latus into four groups, nine sequences of Pseudaulacaspis pentagona into three groups, 11

sequences of Aulacaspis rosae into two groups, seven sequences of Parlatoria proteus into three

groups, three sequences of Pseudaulacaspis prunicola into two groups, and six sequences of P.

celtis along with five sequences of P. cockerelli into one group. These results indicate a species

classification success rate of 53.14% for the bPTP analysis.

Fig 5. Radial chronogram of the delimited armored scale insect species from China. The backbone represents the neighbor-joining (NJ) tree based on the

cytochrome c oxidase subunit I (COI) gene sequences, and the colored circles represent different morphospecies.

https://doi.org/10.1371/journal.pone.0301499.g005
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Discussion

Paul Hebert first introduced the concept of DNA barcoding in 2003 and suggested that the

COI mitochondrial gene can be used as a universal barcode to identify all animals [1, 2]. There-

after, COI-based DNA barcoding has been applied to delineate species in a wide range of ani-

mal taxa [58–63], by primarily utilizing the apparent gaps in genetic distances between the

Fig 6. Radial chronogram of the delimited armored scale insect species from China. The backbone tree represents the maximum likelihood (ML) tree based

on the cytochrome c oxidase subunit I (COI) gene sequences, and the colored circles represent different morphospecies.

https://doi.org/10.1371/journal.pone.0301499.g006
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COI sequences of different species. After analyzing 13320 organisms, Herbert et al. [1, 2] pro-

posed an intraspecific genetic distance of� 2%, which is still widely accepted. However, stud-

ies have found that the thresholds of genetic distance were not completely uniform across

species [64]. The current identification threshold for the BOLD database is 3% [65] but specific

species boundary thresholds have been identified for many insects. For instance, Ball & Arm-

strong [66] obtained a 12.8% interspecific divergence for the New Zealand sooty beech scale

Fig 7. Radial chronogram of the delimited armored scale insect species. The inner backbone tree represents the maximum parsimony (MP) tree based on

the cytochrome c oxidase subunit I (COI) gene sequence, and the colored circles represent different morphospecies.

https://doi.org/10.1371/journal.pone.0301499.g007
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insect, while Park et al. [26] found an average of 10.7% interspecific divergence and 0.97%

intraspecific divergence for the Pseudococcidae and Diaspididae using COI-based DNA

barcoding.

This study used five methods to determine whether COI-based DNA barcoding is effective

in delimiting armored scale insect species from China. The K2P model provided a maximum

intraspecific genetic distance of 15.34%, which significantly exceeds the 2% threshold proposed

Fig 8. Radial chronogram of the delimited armored scale insect species from China. The inner backbone tree represents the Bayesian inference (BI) tree

based on the cytochrome c oxidase subunit I (COI) gene sequences, and the colored circles represent different morphospecies.

https://doi.org/10.1371/journal.pone.0301499.g008
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by Hebert and the 3% threshold of the BOLD database. Results revealed a significant overlap

between the intraspecific and interspecific genetic distances, which may be because of insuffi-

cient data or inaccurate morphological identification of samples. However, these results are

nonetheless informative for determining Diaspididae thresholds. The ABGD analysis showed

a 65.69% species delineation success rate, does not require any input on genetic distance, and

the results can be seen in its delineation of the threshold range of the species, to provide a ref-

erence for the selection of the correct threshold. The ASAP analysis showed a 61.51% species

delineation success rate and is simple and easy to use, with clear results. For the Taxon DNA

Analysis, the accurate identification rates of the Best match, Best close match and All species

barcodes methods were 92.88%, 89.95% and 2.51%, respectively. The Cluster analysis showed

a 58.16% species delineation success rate and is a commonly used method for analyzing the

success rate of DNA barcoding [56]. The bPTP analysis showed a 53.14% success rate of spe-

cies delineation and requires a prior input of a phylogenetic tree for species delineation, which

is complicated and time-consuming.

In these analyses, most of the species could be clustered into groups. Therefore, a combina-

tion of genetic divergence analysis along with the NJ, ABGD, ASAP, Taxon DNA and bPTP

analyses may help in the accurate identification of armored scale insect species. Based on the

results of this study, an intergeneric distance of� 5% was considered an appropriate threshold

for the identification of the Diaspididae in China using the COI gene region. The NJ tree, ML

tree, MP tree and BI tree all showed a total of 46 species, forming monophyletic branches at

the species level.

In this study, fresh and full-bodied female armored scale insect specimens were collected

and molecular and morphological analyses performed. The morphological integrity of the

insects was maintained after genomic DNA extraction, which played an important role in

post-experimental morphological review and species preservation. Although the obtained

DNA concentration of the specimens was not high, it was sufficient for PCR amplification.

This suggests that DNA barcoding can even be performed using small quantities of DNA from

morphologically indistinguishable or mutilated specimens. This adds advantage to the

Table 2. ABGD analysis of COI sequences of armored scale insect species from China, based on three evolutionary models.

Model X Partition Prior intraspecific divergence (P)

0.001 0.0017 0.0028 0.0046 0.0077 0.0129 0.0215 0.0359

JC69 1 Initial 66 66 66 66 66 66 66 66

Recursive 92 92 83 77 75 73 71 66

K2P 1 Initial 66 66 66 66 66 66 66 66

Recursive 93 93 83 77 75 73 71 66

P 1 Initial 66 66 66 66 66 66 66 66

Recursive 75 75 75 72 72 69 69 66

https://doi.org/10.1371/journal.pone.0301499.t002

Table 3. ASAP analysis of COI sequences of armored scale insect species from China, based on three evolutionary models.

Model ASAP scores -10 best partitions

JC69 5.50 7.00 7.50 7.50 8.50 9.00 11.00 11.50 11.50 13.50

-70 -70 -73 -74 -71 -79 -69 -68 -70 -70

K2P 7.50 9.00 11.00 11.50 11.50 12.00 13.00 14.00 14.50 17.00

-68 -70 -73 -71 -74 -78 -61 -83 -66 -72

P 6.00 7.00 7.00- 8.00 8.50 9.00 11.00- 11.00 11.50 13.50

-70 -70 74 -73 -71 -79 67 -68 -69 -54

https://doi.org/10.1371/journal.pone.0301499.t003
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delineation of cryptic species, where cryptic species diversity is being revealed by the develop-

ment and application of DNA classification methods. This study found large genetic distances

between the specimens that were identified as the same species, suggesting the presence of

cryptic species.

Currently, it is widely believed that classification should reflect phylogeny [38]. The phylo-

genetic results obtained here are consistent with Normark et al., [38], with species mainly

divided into the Diaspidinae and Aspidiotinae with the same level of strong statistical support

observed for the species in both molecular phylogenetic trees. However, P. centreesa comprised

a clade separate from the genus Pseudaulacaspis, and from a morphological perspective, the

biggest difference between P. centreesa and other species of the genus Pseudaulacaspis is that

its glandular spines are much longer. So, this species may not belong to the Pseudaulacaspis
genus.

The main difference in morphology between P. celtis and P. cockerelli is that P. celtis has

gland tubercles on the mesothorax and fewer dorsal macroducts (there are four pairs in P. celtis
and five pairs in P. cockerelli in the 2nd stage female) [20]. However, P. celtis and some P. cock-
erelli group together in the phylogenetic analyses. Possible reasons for this include the fact that

genes are extracted from female adults which cannot be compared with immature or male

morphologies; and the presence or absence of dorsal ducts and the number of dorsal ducts are

not the main distinguishing features in the submedian area of the second abdominal segment

of P. celtis. Phylogenies also revealed that Aspidiotinae, Chrysomphalus, Aonidiella and Hemi-
berlesia are non-monophyletic and overlaps, forming a single clade. This suggests additional

molecular and morphological work is needed for these genera.

The purpose of this study was to supplement the DNA barcoding library of armored scale

insects in China, which can greatly improve the identification of scale insects, including imma-

ture and male scale insects. The results showed that COI-based DNA barcoding is a rapid and

accurate technique for the identification of armored scale insect species. However, at present,

COI-based DNA barcoding cannot be used independent of morphological analysis, and the

two techniques should be combined for the accurate and efficient identification of armored

scale insect species. Additionally, multi-molecular markers can also be used for species identi-

fication to improve accuracy.

Conclusion

This work increased the number of COI sequences available for common armored scale insects

from China by adding 239 COI sequences from 50 morphological species representing 21 gen-

era and two subfamilies. Analyses employed the Automated Barcode Gap Discovery, Assemble

Species by Automatic Partitioning, Taxon DNA analysis and Bayesian Poisson Tree Process

methods, which yielded largely consistent results, indicating a robust and credible species

delimitation. Based on these results, an intergeneric threshold of� 5% is recommended for

the identification of the Diaspididae in China. However, individual morphospecies may exist

with cryptic species and more work is needed to elucidate these issues. Therefore, this study

provides novel insights into the identification of armored scale insects in China and provides a

DNA barcode library for future research and application.
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