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ABSTRACT Dactylopius opuntiae (D. opuntiae), commonly referred to as cochineal scale insect or wild
cochineal, poses a considerable risk to cactus plantations globally. Various control methods, including
chemical pesticides and biological treatments, have been employed to control theD. opuntiae pest. This paper
presents an innovative approach to use microwave radiation as a pest management method for D. opuntiae,
in cactus plantations. This method stands out due to its advantages of selective treatment, chemical free, and
no environmental impact. This research work details the use of plane wave for simulating the influence of
microwave radiation using electromagnetic model, on cactus pear and three distinct stages of adult females
of the D. opuntiae. The findings demonstrated that the distribution of thermal energy indicates the ability
of electromagnetic radiation to raise D. opuntiae ’s thermal energy above that of the cactus pear at various
industrial, scientific, and medical (ISM) band frequencies. Additionally, the developed microwave heating
system demonstrates the capability of microwave radiation at 2.45 GHz to eliminate various stages of adult
D. opuntiae without harming the host plant’s quality. The study also explores the impact of adjusting input
power and treatment duration to manage D. opuntiae effectively.

INDEX TERMS Cactus pear, coaxial probe, D. opuntiae, dielectric heating, permittivity.

I. INTRODUCTION
The prickly pear, a cactus plant known scientifically as
Opuntia ficus-indica (L.) Mill. (Caryophyllales: Cactaceae),
has been cultivated in Mexico for centuries and has since
spread to other regions of the world [1]. Cactus have
adapted to thrive in water-scarce environments, making
them a valuable source of sustenance for both animals
and humans [2]. The prickly pear fruit and seed oil are
the primary products cultivated in many Mediterranean
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countries (Spain, Portugal, Morocco, Tunisia, Egypt, Israel,
Lebanon, Turkey, and Greece), making it a target of interest
for the pharmaceutical and cosmetic industries [3], [4],
[5]. Despite the promising economic prospects associated
with prickly pear cultivation, the Mediterranean basin has
faced significant challenges related to the wild cochineal D.
opuntiae, since its first detection in the region [6].D. opuntiae
is believed to have originated in Mexico, and over time it has
spread to other parts of the world [7]. In September 2014,
D. opuntiae invaded in Morocco, where it has since posed a
significant threat to cactus plantations [8], inflicting serious
harm in several of regions where prickly pear cacti are crucial
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for preserving biodiversity and preventing desertification
[6]. In Brazil, the devastation caused by D. opuntiae on
O. ficus-indica for forage has led to a loss of 100,000
hectares, valued at 25 million dollars. Similarly, in Mexico,
the attacks by this pest have led to decreased yields and an
increase in production costs [9]. The mature female cochineal
of D. opuntiae is a difficult insect stage, with a waxy
covering that makes the use of insecticides or other control
methods extremely difficult.When crushed, their bodies yield
carminic acid, a naturally occurring color utilized in the food,
cosmetic, and textile industries [10].

Both nymphs and adult females of the wild cochineal
feed on plants by sucking sap from the cladode, leading to
chlorosis (yellowing), and the subsequent destruction of the
plant. The survival potential of plants can be compromised
when the infestation rate exceeds 75% of the total insect
population [11].
Morocco has made significant progress in developing

integrated pest management (IPM) strategies to reduce the
impact of wild cochineal [10]. In addition, the National Office
of Food Safety (ONSSA) of Morocco has approved several
insecticides to safeguard cactus crops and restrict further
infestation [12]. Nevertheless, the adverse impacts of these
pesticides on human health and the environment, coupled
with the development of insect strains resistant to them, has
emphasized the urgency of developing alternatives and non-
chemical approaches. As a response to these concerns, there
has been a growing emphasis on developing alternatives, such
as using biological treatments (essential oils, plant extracts
and entomopathogenic fungi and bacteria) [2], [10], [13].
The use of dielectric heating, which targets insect pests

without harming host materials, presents a chemical-free
substitute for postharvest insect control in agricultural
commodities. This technique is based on radio frequency
(RF) and microwave (MW) radiation, which covers a wide
bandwidth ranging from 30 MHz to 300 GHz [14]. The
strategy of employing RF and MW heating treatments based
on thermal impact was suggested and accepted as a substitute
treatment in several crops. The industrial, scientific, and
medical (ISM) bands from RF to MW have been allocated
by the US Federal Communications Commission (FCC) to
avoid electromagnetic interference [15], [16]. RF and MW
radiation make ions and polar molecules of the dielectric
material move and rotate; this leads to the heating of the
material [15]. Although it may appear novel, but dielectric
heating was proposed in 1929 [17]. Dielectric heating has
proven its effectiveness in controlling various insect pests,
including codling moth [18], [19], Navel Orangeworm [20],
[21], and Rice moth [22] affecting walnuts, as well as red
flour beetle in almonds [23]. Moreover, this method has
been shown to be useful in treating grains such as wheat,
rice, corn, white maize, coix seeds that are infested by
Rhizopertha dominica (Coleoptera: Bostrichidae) [24], [25],
[26]. Dielectric heating has also been demonstrated to be
effective in treating palms trees affected by Rhynchophorus
ferrugineus (Olivier) (Coleoptera: Dryophthoridae) [15],

[27], [28], [29], [30]. The quality of the host material remains
uncompromised following treatment; this is due because of
notable disparity in dielectric properties between pests and
their host materials. On this approach, dielectric constant
emerges as a critical parameter in the determination of the
optimal frequency for dielectric heating treatment. As well as
to build an EMmodel that could be used to simulate the effect
of microwave radiation on pest and its host material [39].
Research efforts have been dedicated to measuring the

permittivity values of various plant materials [31], [32],
[33], [34], [35], [36], [37], [38], [39], and pests [18], [27],
[39], [40], [41], enabling researchers to draw comparisons
and gain a comprehensive understanding of how different
pests and their host species respond to dielectric heating.
Furthermore, permittivity values for cactus pear have been
studied in previous research [42], [43], [44]. However,
the permittivity values of D. opuntiae have never been
measured before. To address this gap, this research paper
is organized as follows. Section II presents how to assess
the dielectric properties of pests and cactus using a coaxial
probe complemented by overview of the electromagnetic
models for cactus and wild cochineal. Additionally, Sec-
tion III introduces thermal simulation findings utilizing the
model developed in the previous section, elucidating the
determination of whether D. opuntiae or the cactus pear
displays higher susceptibility to the electromagnetic radiation
treatment. Moreover, Section IV outlines an experimental
investigation on dielectric heating for controllingD. opuntiae
while safeguarding the quality of the cactus pear. The
Section V summarizes the main findings of this study.

II. ELECTROMAGNETIC MODEL
An electromagnetic model of both plant and insect serves
as a valuable tool for simulating the effects of microwave
radiation on cactus pear plants infested by the wild cochineal.
This approach allows us to analyze and compare the
responses of these biological substances to electromagnetic
radiation exposure, shedding light on which of the two,
cactus pear or the wild cochineal, is more significantly
affected by this form of energy. One critical challenge we
encountered in constructing such a model is the absence of
specific dielectric properties of D. opuntiae, that prompted
us to focus on characterizing the dielectric properties of both
cactus pear and D. opuntiae. Despite existing literature on
opuntia ficus indica’s dielectric properties [42], [43], [44],
our characterization ensures the accuracy of our model in
representing the specific variety under study.

A. ELECTROMAGNETIC MODEL OF D. OPUNTIAE AND
CACTUS PEAR
This study focuses on three distinct categories of adult
females of D. opuntiae: young adult (small), pre-adult
(medium-sized), and mature adult (big size - fully grown
adult). To accurately measure the specimens’ dimensions and
provide them with forms that are close to reality, the three
adult stages were first frozen and then lyophilized. Then,
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FIGURE 1. Experimental setup for measuring adult D. opuntiae
dimension.

FIGURE 2. Model of cactus pear infested by 3 × 3 D. opuntiae colony.

a razor blender and fine forceps were used to dissect the
insects with precision. The exact dimensions required for
the electromagnetic model were then measured utilizing a
Nikon SMZ25 stereo microscope, manufactured by Nikon,
Japan. Image analysis was conducted using Nikon’s imaging
software, specifically NIS- Element Analysis D 4.20.00,
to obtain precise visual representations (Fig. 1). In this study,
each adult insect type was characterized by two permittivity
values: the outer part represented by the skin’s permittivity
and the inner part by the insect paste’s permittivity. Semicir-
cular configurations were employed to depict young adults
with a 2.2 mm radius and 0.1 mm thickness, pre-adults with
a 3 mm radius and 0.17 mm thickness, and mature adults
with a 4.2 mm radius and 0.2 mm thickness. The remaining
portion of each semi circle was utilized to represent the inner
part of adult females of the D. opuntiae. A cubical model,
with dimensions of 50 mm 50 mm 10 mm, was employed to
emulate the cactus pear (Fig. 2).

B. DIELECTRIC PERMITTIVITY MEASUREMENT
Dielectric properties are vitally important in dielectric heat-
ing of biological materials. These properties are represented
by the dielectric constant ε’ and the dielectric loss factor
ε’’, where the dielectric constant ε’ describes a material’s
ability to store electromagnetic energy. Furthermore, the
loss factor ε’’ is associated with electromagnetic energy
dissipation, which represents a material’s capacity to convert

electromagnetic energy to thermal energy [45]. The dielectric
properties of insects and plants are used to identify which
materials will absorb the most EM energy and produce
the most thermal energy during dielectric heating [46].
According to (1), the electromagnetic energy stored by
a dielectric material varies directly with real part of the
permittivity (ε’ ) and the applied electric field (E) and the
power that characterizes the heat energy generated from EM
energy (2), which is proportional to the applied frequency (f),
electric field (E), and loss factor ε’’ [47].

U =
1
2
ε′ε0E2(CV/m3) (1)

Q = 2π f ε0ε′′E2(W/m3) (2)

ϱCp
∂T
∂t

= Q (3)

According to eq (2), whenever the electric field strength
and frequency are constant, higher lossy materials generate
more heat energy than lower lossy ones [45]. Moreover, the
thermal energy generated by the same dielectric material
could be enhanced by increasing the frequency or the applied
electric field [48]. Equation (3) illustrates a direct correlation
between Q and temperature distribution [20], Where ϱ is the
density (Kg/m3), Cp is the specific heat capacity (J/kg.K),
and T is the temperature (K). An increase in Q results
in a corresponding rise in temperature distribution, leading
to the mortality of insect pests. As demonstrated in [15],
applying 1 KW of energy for 7 minutes proved sufficient to
achieve the lethal temperature for the red palmweevil without
compromising the quality of the palm.

Dielectric properties of both cactus pear and D. opuntiae
were determined through the use of the open ended coaxial
probe technique across a frequency range of 0.5 to 20 GHz.
This technique is widely employed for permittivity mea-
surements in biological tissues [16], [31], [32], [40], [41],
[42], [49], [50], [51]. A coaxial probe in direct contact with
the material under test (MUT), connected to a Keysight
N5235B 10 MHz to 50 GHz PNA-L network analyzer
(Fig. 3-a) was used for reflection coefficient measurement
at the probe material interface following a short-air-water
calibration technique [32]. Permittivity values were then
extracted using the Keysight Materials Measurement Suite,
Version 20.0.22083101 [40].

1) COMPLEX DIELECTRIC PERMITTIVITY OF D. OPUNTIAE
Dielectric constants and loss factors for D. opuntiae at three
distinct adult stages, as visualized in Fig. 4, are detailed in
Fig. 5. Skin measurements for each developmental stage of
the insects were measured using a coaxial probe, ensuring
direct contact with the insect (Fig. 3-b). Additionally,
measurements were taken specifically for the paste associated
with each developmental stage of the insects, across a large
frequency band (0.5 GHz to 20 GHz). The wide frequency
band utilized in this study, enabling researchers to capture
a comprehensive view of how electromagnetic interactions
vary with frequency in D. opuntiae tissues. The permittivity
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FIGURE 3. (a)Experimental setup for permittivity measurement,
(b) Photograph of the setup open ended coaxial probe for D. opuntiae’s
permittivity measurement, (c) Photograph of the setup open ended
coaxial probe for cactus pear’s permittivity measurement.

FIGURE 4. Real size of the three stages of adult D. opuntiae.

values of the insect paste remain consistent across all three
stages, indicating an elevated level of similarity in the
plots, while the skin’s dielectric features of the three insect
stages exhibited consistent trends Fig. 5. The real part ε’
showed a declining pattern as the frequency increased; this
behavior corresponds to the trends observed in the dielectric
constant of adult’s rice weevil [52], codling moth [40],
cowpea weevil [53], and red flour beetle [54]. In contrast, the
imaginary component ε’’displayed an increase with the rising
frequency until it reached a peak around 12 GHz, beyond
which it exhibited a decreasing trend with further increases
in frequency, aligning with results observed in the loss factor
of adult rice weevil [52].

FIGURE 5. Permittivity measurement of different stages of adult D.
opuntiae in comparison with different stages insect paste (a) real part
and (b) imaginary part.

The reduced water content in young adult females of D.
opuntiae contributes to lower complex permittivity value in
this stage compared to the mature adults. The variation in
permittivity between young and mature cochineal carries
significant implications for their thermal energy production.
Thermal energy generation within an organism is linked
to the ability of its tissues to absorb and dissipate heat
efficiently. Lower dielectric constant in young and pre-adult
of the cochineal indicates a reduced ability to store electrical
energy within their tissues (1) and suggests that young adults
may produce less thermal energy compared to mature adult
females (2).

2) COMPLEX DIELECTRIC PERMITTIVITY OF CACTUS PEAR
Dielectric measurements of cactus pear were conducted using
a coaxial probe within a wide frequency range, spanning from
0.5 GHz to 20 GHz. These measurements were performed
at different positions of the cladode (Fig. 3-c). The average
values of both dielectric constant and loss factor (Fig. 6)
show that as the frequency increases, the dielectric constant
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FIGURE 6. Plot of mean dielectric constant (ε’) and dielectric loss factor
(ε’’) for cactus pear at ambient temperature. Data plotted are the mean of
different positions of cactus pear.

TABLE 1. Comparison between dielectric properties of D. opuntiae adult
females and cactus pear at ISM band.

ε’ exhibits a continuous decrease. This trend signifies a
reduced ability of the material to store electrical energy at
higher frequencies. Moreover, the loss factor ε’’ displays
a distinctive pattern. It sharply declines as the frequency
increases until it reaches a minimum at approximately 2 GHz.
Beyond this point, ε’’ begins to rise again with further
increases in frequency. The alignment of our findings with
previous research documented in [42].

C. COMPARATIVE STUDY ON DIELECTRIC PROPERTIES OF
D. OPUNTIAE AND CACTUS PEAR AT ISM BAND
Three frequencies, selected from the measured frequency
range and falling within the ISM band, are employed to
simulate the effects ofmicrowave radiation on cactus pear and
D. opuntiae. Table 1 presents a comparison of the dielectric
properties of cactus pear andD. opuntiae at these frequencies.
These findings anticipate that insects, characterized by their
high dielectric properties, exhibit a significant capability
to store EM energy and transforming it to thermal energy,
in contrast to the plant. Consequently, it is reasonable to

FIGURE 7. Thermal simulation setup.

FIGURE 8. Microwave heating effects on (a) skin and (b) internal
components of young adult D. opuntiae with a power density
of 300 W/m2 at 2.45 GHz.

expect that insects will experience more substantial thermal
effects than the plant across a range of ISM bands.

III. THERMAL SIMULATION
The permittivity data obtained for both the cactus pear and
adult of D. opuntiae (Fig. 5) and (Fig. 6) were employed in
Ansys software to simulate the impact ofmicrowave radiation
on three developmental adult stages ofD. opuntiae and cactus
pear using plane wave as an excitation (Fig. 7), covering three
frequencies within the ISM band, which constituted a portion
of the measurement’s frequency band.

The simulation was specifically directed at three distinct
frequencies: 915 MHz, 2.45 GHz, and 5.8 GHz, additionally,
two nominal power density levels, namely 300 W/m2

and 600 W/m2, were included as input parameters for
the simulation using the plane wave. The thermal energy
produced within the biological tissues was quantified using
the designated input power density levels and frequencies.
This study aims to determine which entity, whether D.
opuntiae or the cactus pear, that exhibits greater sensitivity
to the electromagnetic radiation treatment.

A. INPUT FREQUENCY OF 2.45 GHZ
1) MICROWAVE HEATING DISPARITIES BETWEEN INNER
AND OUTER PORTIONS OF D. OPUNTIAE
In all adult stages of D. opuntiae, the inner part consis-
tently exhibits higher thermal energy levels compared to

80914 VOLUME 12, 2024



F. Z. E. Arroud et al.: Thermal Effect of Microwave Radiation on Dactylopius opuntiae

FIGURE 9. (a) Fully grown, (b) Medium, and (c) Young adults
configuration.

the surrounding skin. Fig. 8 shows the high difference
between the thermal energy of the skin and the insect
paste of the young adult. This discrepancy is primarily
due to the inner part’s higher loss factor (Fig. 5-b), which
enhances its capacity to convert electromagnetic energy
into heat.

2) COMPARATIVE DIELECTRIC HEATING RESPONSES OF
THREE DEVELOPMENTAL STAGES OF ADULT D. OPUNTIAE
AND CACTUS PEAR
To perform this experiment, the center of cactus cladode
was infested by adult females of D. opuntiae (Fig. 9),
the three adult stages and cactus pear were subjected to a
uniform microwave heating and evaluate their reaction to
microwave heating. The thermal energy distribution observed
across the cactus pear and the three stages of adult models
(Fig. 10), reveals that mature adult females of D. opuntiae is
significantly more sensitive to microwave heating compared
to the other developmental stages. Furthermore, a noteworthy
finding is the comparatively lesser impact of microwave
radiation on the cactus pear plant when compared to the three
adult stages. This difference can be attributed to the elevated
loss factor value exhibited by mature adult females of D.
opuntiae in comparison to the other developmental stages
contributes significantly to their increased sensitivity to
microwave heating. Additionally, it is important to highlight
that all developmental stages of adult D. opuntiae exhibit
higher loss factor values at 2.45 GHz when compared to the
cactus pear plant (1). This distinction emphasizes the intrinsic
differences in thermal susceptibilities between the pest and
the host plant.

FIGURE 10. Comparative thermal energy distribution in cactus pear and
D. opuntiae (a) fully developed adults, (b) intermediate, and (c)young,
with a power density of 300 W/m2 at 2.45 GHz.

FIGURE 11. Thermal energy distribution on cactus pear and D. opuntiae
adult with an input power density of 600 W/m2at 2.45 GHz.

3) EFFECT OF POWER INCREASE
The remainder of this simulation study will concentrate
solely on evaluating the impact of dielectric heating on
cactus pear infected with fully developed D. opuntiae. This
choice of fully developed stage is representative of the
prevalent life stage encountered in cactus pear. Thermal
energy distribution patterns (Fig. 11) when subjected to a
power density of 600 W/m2 at 2.45 GHz, it is evident
that as the power density level increase, both the cactus
pear and adult D. opuntiae exhibit a corresponding rise in
thermal distribution. Notably, this analysis indicates that adult
D. opuntiae individuals are more affected by microwave
radiation compared to the cactus pear plant.

B. INPUT FREQUENCY OF 915 MHZ AND 5.8 GHZ
At two discrete frequencies, a constant power density
of 300 W/m2 was applied to cactus pear hosting adult
D. opuntiae at a fully developmental stage. The resulting
thermal energy distribution (Fig. 12) reveals that the increase
in frequency was found to correlate with an elevation in
the thermal distribution levels of both the cactus pear and
D. opuntiae. Conversely, a reduction in frequency led to a
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FIGURE 12. Thermal distribution of cactus pear and adult D. opuntiae at
(a) 915 MHz and (b) 5.8 GHz with an input power density of 300 W/m2.

TABLE 2. A comparison of the thermal energy distribution of cactus pear
and fully developed adult within the ISM band.

proportional decrease in thermal distribution within both the
host plant and the insects. This observation is in accordance
with the established linear relationship (2), which describes
the direct correlation between thermal energy and frequency.
It is noteworthy to mention that the cactus pear displays
varying degrees of susceptibility to electromagnetic radiation
compared to D. opuntiae at different frequencies. The plant
is less affected than D. opuntiae.

Based on the outcomes of thermal simulations, frequency
within the ISMband, namely 5.8 GHz, is identified as optimal
choice for controlling adult D. opuntiae in cactus pear, due
to discernible differentials in thermal energy distribution
between insects and plants, conversely; minimal divergence
in distribution was observed at 915 MHz (2). However, for
experimental investigation, solely the 2.45 GHz frequency
will be utilized to assess its effect on mortality rates of
adult D. opuntiae across various developmental stages. This
selection is facilitated by the ready availability of high power
sources, such as magnetrons, operating at this frequency in
the market.

IV. EXPERIMENTAL STUDY RESULTS
In order to assess microwave radiation on both the quality of
cactus pear and themortality rate ofD. opuntiae, a microwave
heating system is employed in our experimental approach.
This setup use magnetron as a high power source, resonating
at a frequency of 2.45 GHz connected to a horn antenna
(Fig. 13). The antenna and the treated material were situated
at a separation of 1cm.

A. EVALUATING THE PHYTOTOXICITY OF CACTUS PEAR
The microwave heating system utilized in this study can
produce a range of power levels spanning from 300W to
600W. These powers, applied at various durations, were
subjected to study their impact on the phytotoxic response
of the entire cladode. The central aim of this study was

FIGURE 13. Microwave radiation setup.

TABLE 3. Impact of 2.45 GHz Microwave Radiation at Varied Power Levels
and Durations on the Phytotoxicity of Cactus Pear.

to identify the optimal duration for each power, while
maintaining the plant in good quality without showing any
symptoms of phytotoxicity. The level of phytotoxicity in
the plant was conducted based on the emergence of yellow
areas following treatment. A high level of phytotoxicity is
indicated by the manifestation of yellowing across half of the
cladode after treatment, whereas a low level of phytotoxicity
is denoted by the presence of only minor yellowed areas.

The entire cladode was utilized in this study, positioned
1cm away from the horn antenna. Table 3 illustrates the
impact of microwave radiation at various power levels
and durations on the phytotoxicity of the plant. Notably,
at 300W, there is a significant phytotoxicity as manifested
by appearance of yellow zones on the cladodes, particularly
under extended exposure time. The observation showed
that the shorter treatment period is associated with less
phytotoxicity. A 5-minute treatment at 300W shows no
apparent phytotoxicity. The optimal treatment duration,
demonstrating no phytotoxic effects on the plant, was reduced
to 4 minutes, 2 minutes, and 1 minute for power levels of
375W, 500W, and 600W, respectively.

B. EVALUATING THE MORTALITY OF D. OPUNTIAE
Cactus pear cladodes without infestation were grown in
plastic pots (27 cm diameter, 24 cm height) under green-
house conditions at 30◦C. The cultivation substrate consisted
of a blend of one-third soil, one-third sand, and one- third
peat. The plants were then subjected to highly infested
cladodes sourced from the Marchouch area (32 14’31.9’’N
8 16’42.7’’W). Placing each infested cladode between
two pots, an intentional artificial infestation occurred after
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TABLE 4. Mortality rate of adult female cochineal D. opuntiae at their various stages of development exposed to various microwave radiation powers
and treatment durations up to 192 hours after application.

20 days exposure period. The infestation involved colonies
exhibiting various stages of adult females with a waxy
covering on their bodies, these specimens were rigorously
chosen for the experiments. Three developmental stages of
adult females of D. opuntiae, was assessed under optimal
power and duration conditions that demonstrated non-toxic
effects on the cactus pear (as outlined in table 3). Biological
trials were conducted employing a completely randomized
design (CRD) with three replicates per power and duration
for each treatment. Ten adults, ten pre-adults, and ten
young females of D. opuntiae without wax were individually
positioned on cactus pear pieces of identical dimensions with
an entomological brush placed in Petri dishes (9 cm diameter)
to replicate the pests’ natural conditions during treatment
and mortality rate assessment. Microwave radiation, emitted
by a horn antenna situated at 1cm from the Petri dishes,

was applied to the three stages of adult female of the
cochineal. The mortality of adult females for the three
developmental stages was observed over an 8-day period
following treatment, employing a binocular microscope
(Motic DM-143). Dead females displayed a distinct dark
brown coloration and dehydration of their bodies.

1) STATISTICAL ANALYSIS
All data were analyzed by Genstat (22nd Edition, VSN Inter-
national, UK) with stage of development of adult females and
time after treatments as factors and percentage of mortality as
response variables. Analysis of variance (ANOVA two ways)
was used to evaluate the main and interaction effects of stage
of development of D. opuntiae adult females and time after
treatments at the same power (as fix factor). Means were
compared using Fisher’s least significant differences (LSD)
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test at (p < 0.05) and least square means were used for
pairwise comparisons of the main factors. In addition, One-
way analysis of variance (ANOVA) and Tukey’s Test were
used to compare the effects of different powers on percentage
of mortality at each development stages of cochineal D.
opuntiae at the same time after treatment, which were
considered as fix factors.

2) PEST MORTALITY
The mortality rates of all development stages of D. opuntiae
adult females using various microwave radiation powers
and treatment durations at different time after treatments
are presented in Table 4. Mortality of D. opuntiae adult
females was significantly affected by the exposure interval
(p < 0.001) at the same radiation powers (Table S1). The
interaction of development stages of D. opuntiae and time
after treatments was significant at 300 W (p < 0.05) and
highly significant at 375 W and 500 W (p < 0.001),
respectively. However, this interaction was not significant
at 600 W (p < 0.05)(Table S1). The total mortality rate
reached 100% for young female only 24 h after exposition
to 300W applied in 5min. However, using the same power
and exposure time needs 120 h and 168 h to reach 100%
mortality for pre-adult females and mature adult females,
respectively. Similarly, at the power of 375W, the total
mortality of the young females and pre-adult females was
reached quickly only 24 h after treatment. However, adult
female mortality using the same power required longer time
to control, reaching 90%mortality, 192 hours after treatment.

For 500 W at 2 min application, the total mortality
reached 24 h after application for the young females. This
power requires more time (72 h) to kill all the pre-adult
females and 144 h to destroy all the mature females. For
the highest tested power 600 W applied in 1 min, the total
mortality of the young females was reached 96 h after
treatment. However, this same power recorded between 70 to
80 mortalities against pre-adult females as maximum, at
96 h and 168 h after application. Surprisingly, this same
power reached 96 and 100% mortalities against mature
females, 168 and 192 h after treatment. The permittivity
values for various stages of D. opuntiae indicate that adult
females are expected to experience a heightened mortality
rate due to their elevated loss factor values, leading to
increased thermal energy compared to other stages. However,
the experimental results suggest that, among all the tested
powers and durations, young females are more sensitive
to microwave radiation, while fully grown adults are less
sensitive. This sensitivity contrast could be attributed to
the smaller thickness of young females compared to other
stages, as elaborated in Section II. Storage pests likeAmyelois
transitella (Lepidoptera: Pyralidae) [20], Callosobruchus
maculatus (Coleoptera: Bruchidae) [55], Sitophilus oryzae
(Coleptera: Curculionidae [56], [57], and the R. ferrugineus
[29] exhibit a comparable trend. Larvae, when subjected
to dielectric heating, display lower resistance and a shorter
lethal time compared to adult.

The comparison of means between mortalities at different
tested powers on young females and pre-adult females at the
same exposure interval revealed a substantial difference in
mortalities only 2 and 24 hours after application (Table 4).
However, the statistical analysis using one way ANOVA
showed no difference between the tested powers on adult
females (mature) at different exposure interval as fix factor.
According to (1) the rise in power is a corresponding rise
in the thermal energy of the tested material, expected to
result in an increased mortality rate. However, the actual
results, discovered after a 48-hour treatment period, indicate
no significant variance in the mortality rates among various
stages of adult females. This observation may be attributed to
the correlation between the heightened power level and the
reduction in treatment duration.

V. CONCLUSION
The application of dielectric heating for the control of
D. opuntiae is introduced on cactus plants. The proposed
electromagnetic model employs the measured permittivity
values. The electromagnetic model is then utilized to simulate
the distribution of thermal energy in cactus pear and on
various stages of adult females D. opuntiae using plane
wave as an excitation. The thermal energy distribution
indicates that cactus pear is less impacted by microwave
radiation compared to the three stages of adult female
D. opuntiae at the three tested frequencies of ISM band.
Notably, the thermal energy distribution highlights that the
mature adult female is more sensitive tomicrowave radiations
than the other developmental stages. The experimental
findings demonstrate the efficacy of microwave radiation in
effectively managing diverse developmental stages of adult
D. opuntiae. Optimal power levels and durations ensuring
no toxic impact on the plant, result in complete mortality
across different stages of adult females D. opuntiae, with a
notable sensitivity observed in young adults to microwave
radiations. The increase in power levels correlates with
reduced treatment durations, thereby expediting the entire
treatment process. Further investigation will explore the
complex effects of microwave radiation on the fertility,
DNA damage, hatching of eggs, weight, growth, and feeding
behaviour of adult femaleD. opuntiae. This research will also
provide a novel approach to pest management.
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